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A Hybrid Method for 3D Pose Estimation of
Personalized Human Body Models

Abstract

We propose a new hybrid method for 3D human body pose estimation based on
RGBD data. We treat this as an optimization problem that is solved using a
stochastic optimization technique. The solution to the optimization problem is
the pose parameters of a human model that register it to the available observa-
tions. Our method can make use of any skinned, articulated human body model.
However, we focus on personalized models that can be acquired easily and auto-
matically based on existing human scanning and mesh rigging techniques. Obser-
vations consist of the 3D structure of the human (measured by the RGBD camera)
and the body joints locations (computed based on a discriminative, CNN-based
component). A series of quantitative and qualitative experiments demonstrate the
accuracy and the benefits of the proposed approach. In particular, we show that
the proposed approach achieves state of the art results compared to competitive
methods and that the use of personalized body models improve significantly the
accuracy in 3D human pose estimation.






Mo LBELOWXA wEVodog 3A onTixNg
TapaxoAoVINCTNG EEATOULKEVUEVLY LOVTEAWY TOU
avIpWTIVOU CWUATOS

ITepiandn

[Tpoteivoupe war véo LPBELOLXY PéBodo Yior TNV TELOOLEC TaTT TopaxoAoinoTn Tng
otdone Tou avipnnivou couatog 1 omolo Bactleton oty extiunon dedouévwy Tou
TEOXUTTOUV and XAUEPES YeOUaTOC xou Bddouc. Avtwetonilovye To TEOBANUL WS
TeOBANU BeATiIoTOTOINONG TOU EMAUETAL YENOULOTOIWVTAS Uldl GTOYACTUIXY TEYVIXT).
Ta anoteréopato Tou TEOXVUTTOLY and TNV exTEAOUUEVT BeATioTOoTOiNoT €lvon oL Tto-
edueTteol Véong evog avipmmvou HovTELoU Tou Taletdlouy 660 To BuVATOV axplBEc Te-
pa oTi¢ dlardéoiueg tapatnerioeic. H pédodog yog umopel va xdvet ypror omoloudfrote
TELOOLEG TUTOU LOVTEAOU avIpOTIVOU GWUATOS YIoL TNV EXTEAECT, TNG OTTIXNG TOEXO-
hovinone. 261600, eoTaloupe O EEATOUXEVUEVA LOVTEAN TIOL UTIOPOVUY EUXOAAL VL
anoxtnolV Yden oTIC UTHEYOUCES GUYYPOVES TEYVIXES TELOOLIC TUTNG UVUXUTUOXEU-
fic.

O mopatnefoeic ouviotavior oty Tplodldotatn dour Tou avdpohrou (tou oto-
TUTWVETOL amd TNV Xdpepa) xou Tic VETELS TwV aplp®oemy Tou GOUATOSC (oL UTO-
Aoyilovton pe Bdon éva ouvehixtxd veupwvixd dixtuo). M oegpd and nocotixd
X0l TTOLOTIXG. TELQAUATO XATAOEWVOOLY TNV oxp{Belor oL Tal 0QERN TNG TEOTEWVOUEVNS
TEOCEYYIONG. DUYXEXPWEVH OTWS ATOOEVUOUUE, 1) TROTEWOUEVT TEOCEYYLON ETL-
TUYYAVEL ooV TIXr oxpifBeta Tapoxohovinong oe oyéon Ue avTay WO TiXES uedodoug
xa 1) YeNon ECATOUXEVUEVLY UOVTEAWY CWUATOS BEATUOVEL GNUAVTIXG TNV TOLOTNTA
TWV ATOTEAEOUATOY TELOOLEG TUTNG EXTUNONS TS avipdmivig Yéone xou oTdong.
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5.1

5.2

A block diagram that gives a connectivity overview for the various
modules of the proposed framework. Green arrows are raw input
from our sensor, pink arrows symbolize intermediate input provided
by a module of the framework, the red arrow is the final output pose.
Our input source is an RGBD Kinect sensor that provides us with
a stream of VGA color and depth images. The DNN 2D Detector,
that is described in Chapter 3, only needs the Color stream and
works as a black box that provides us with 2D estimations about
joint locations. Both the color and depth stream are used by the
reconstruction module that is described in detail in Chapter 2. The
4 views of the person are first combined to a rigid mesh that is then,
in a subsequent step, converted to a fully skinned articulated body
model. This procedure only needs to be performed once. Finally
our 3D Tracker receives as input a skinned model, a depth frame
and an array of 2D joints estimations and outputs a 3D tracking
hypothesis that matches the observation of the Kinect sensor.

The level of detail of the meshes rendered in the optimization loop
will dramatically increase optimization times, especially on lower
end graphics cards. By simplifying the mesh through Quadratic
Edge Collapse [34],[49] a method that is readily available on 3D
modeling tools like Blender and Meshlab, we can reduce triangle
counts and yield significant performance gains. In this figure we can
see gradual simplified versions of our original 119484 faces model at
50%,10%,5%,1%.,0.5% and 0.1% face count. We can see that our
model is over-sampled and over-tessellated especially in the context
of our QVGA(320x240) kinect sensor and our QQVGA(160x120)
renderings and comparisons. Even when discarding 99.5% of the
original vertex count and using only 597 faces (0.5%) the volume
occupied by the model is still accurate while much easier to render.
However further reducing the face count to 0.1% of the original
model the collapsing algorithm starts to impact useful features of
the model like the head and feet and devolves to something that
barely even resembles a human. A good performance to quality
ratio selection is the 1194 face (1%) model. Further tweaking the
model in the 0.1-0.5% face range could yield highest performance
benefits but at serious expense of tracking accuracy. . . . ... ..
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Different rendering sizes of a 64 (8x8) PSO particle configuration
, displayed overlayed for comparison. Input depth observations
come encoded in frames of 640x480 pixels, a resolution which is
internally upscaled from the 320x240 depth sensor of the ASUS
Xtion/Kinect. However performing comparisons in the original res-
olution proves very demanding for contemporary GPUs and thus an
important technique that enable interactive framerates is to subsam-
ple and work with more manageable image dimensions. The largest
1280x960 tile-batch consists of tiles sized 160x120 pixels each that
share the same aspect ratio with the input depth frame. However
we can further reduce sizes by using ”zoomed“ projection matrices
that clip the rendering viewport and that can also alter the aspect
ratio by squeezing it. A 100x100 “zoomed” projection matrix has
more resolution than the 160x120 scaled one since almost two thirds
of the 160x120 image are empty. This way and combined to a lower
polygon mesh we can drastically improve rendering times as well
as perform fewer CUDA reduction operations and gain significant
speed-ups reaching 9fps framerates when including the neural net-
work times. . . . ... L.

Snapshots of the 15 models captured using [102] posing in the de-
fault t-pose. The parametric model is also included for comparison
in the bottom right. The 4 subjects selected for the experiments are
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BMI difference to make experiments more representative of the im-
portance of body type. Their BMI measurements are the following
from left to right. Male 1 (M;) is 1.78cm tall and 85kg (26.8BMI),
Female 1 (F1) is 1.58m and 47kg (18.8BMI), Male 2 (M3) is 1.90cm
and 80kg (22.2BMI) and Female 2 (F») 1.71m, 67kg (22.9BMI).
The datasets provided in the public archive are the four used in the
comparitive analysis of this work. M1 is Ammar, M2 is Dennis, F'1
is Elina and F2 is Aggeliki2 . . ... ... ... ... .......
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ments. ... L e e e e e
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The presented framework is very well suited for applications that re-
quire detailed tracking. Left: Physiotherapists could use the track-
ing output to track patient rehabilitation progress after injuries.
The parameter space of the problem can be easily constrained to
only track the limbs focused by the doctor to better facilitate mea-
surements. Right: Humanoid robot teleoperation could also bene-
fit from the proposed method. The list of angles returned by the
tracker can be directly mapped to robot motors and be used to
control humanoid robots. . . . . . . ... ... Lo
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Chapter 1

Introduction

Computers have changed many forms in the last 4 decades. From giant mainframes
to personal computers and from game consoles to internet cloud services we are
surrounded by computers, billions of mobile phones, embedded devices, desktop
PCs and internet servers that facilitate and support most modern activities and
services we enjoy in western societies.

The computer industry, both hardware and software, is now mature and stream-
lined and has penetrated most of the aspects of our modern lives while software and
hardware companies top the charts year after year in the lists of most successful
businesses worldwide.

We are witnessing more and more of a withdrawal of computers from their
traditional static nature to a more ubiquitous versatile platform with laptops,
netbooks, tablets and smartphones that are able to be carried anywhere. They no
longer have to rely on traditional low fidelity input sources, such as keyboards and
mice but can sense the world through cameras, location tracking via GPS and even
interact with objects and other machines through NFC, RFID and other wireless
protocols.

As processing power increases and becomes readily available in mobile devices
computer perception will become a necessity and require more and more robust
applications. The next paradigm shift seems to be towards augmented reality,
autonomous cars and ultimately home robotics which I personally believe will
create huge new markets with profound consequences to human lives.

This work builds upon state of the art computer vision algorithms and aims
to provide a unified framework that can facilitate a high quality human tracking
technique that can be used in many of those diverse contexts.

1.1 Motivation

In retrospect this MSc thesis is much more focused in contrast to the work I did
for my BSc thesis. My BSc thesis had to do with a very broad implementation of
a “Guarddog Robot” with everything it entailed on both hardware and software
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ends. This included designing and building the physical platform, and making
every decision and managing every minute detail from motors and batteries to
writing all of the software stack that run on top of it. This broad surface of
problems to solve however meant that many compromises had to be made and
that critical modules like human perception were limited to just a HAAR caascade
face detector[118]. This was of course the best thing possible given the input from
a stereo pair and the computing power available. However from my experience
when building that robot what I believe was the most core component was proper
human perception. So although this work can be useful in a variety of scenarios
where we move away from traditional input peripherals such as keyboard, mouse
and touch interfaces, at the back of my mind I always had the main motivation
of creating software that can be used as a plug & play module in a mobile robot
platform.

During the period (2016-2018) there has been a boom with a multitude of
household robots that are beginning to appear and have been funded through
crowd-funding or by large corporations. I will proceede naming a few of them
while also listing their funding amount. Of course these sums of money neither
directly reflect quality nor can be predictors of success but they are certainly telling
about the rising consumer demand. BUDDY [30] which is a small sized robot
razed $659,700 in indiegogo. AIDO [36] which is marketed as virtual assistance
and telepresence robot razed $891,589. Alpha 2 [37] a small humanoid robot
was crowd-funded with $1,407,164 and OLLY [89] a table robot with $327,454,
Laika [12] a companion for dogs with $77,428 and the list goes on and on with also
many other unsuccessful robots such as Nixie [17] the personal robot, Amy [91]
the thoughtful assistant, Robit [52] marketed as “the world’s most affordable home
robot”, TAPIA [61] a talk robot companion, JIBO [9] and many more. Bigger
companies such as Google and Amazon have also entered the market cautiously
with immobile devices that only use speech as the HCI medium and which are
better suited for their search engine results while avoiding all the complexities of
a moving device and also beeing able to offer them with a much cheaper price tag.
In the Consumer Electronics Show that was held in Las Vegas in January 2018,
LG [47] unveiled a line of helper robots for service, hospitality and shopping, Sony
relaunched an improved version of its AIBO [107] dog robot while HONDA [33]
had a series of indoor robots as well as autonomous all terrain vehicles for outdoor
environments. Finally Aeolus [90] debuted an autonomous robot that also features
arms in order to be able to handle household chores. All this business activity is
not a coincidence and this trend means a great need for vision-related technology
such as the one presented here.

Although robots are not yet mainstream consumer products nor household
commodities due to their complexity that directly reflects the complexities of in-
door environments, a first glimpse of massive use of body tracking HCI technology
in consumer products was observed when the kinect sensor debuted in 2010. De-
spite its original planned use as just an accessory for console gaming, the RGBD
camera combined a low price point, good output quality and compatibility with
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personal computers thanks to the USB connection that made it quickly be adopted
both by the scientific community as well as tinkerers and hackers from all over the
world. This new sensor rendered older complex multi camera setups optional (if
not obsolete) and required no calibration or other setup procedures. Having di-
rect access to a 3D depth frame-buffer with virtually no extra computing power
required, in turn made a lot of new applications feasible. At the time of writing
this document, this 3D camera technology has been just incorporated in the new
flagship series of Iphone-X mobile phones that for now enable user authentication
by scanning the geometry of human faces but as user adoption grows there are
bound to be used for more and more applications.

All these different projects including the Kinect can be ultimately divided in
two broad categories which are mobile vs static devices. Static devices have a
much more constrained environment to work with, tend to rely more on voice
commands and any vision problems are simplified since the backdrop is always
static. This makes perfect sense in order to reduce their cost and make them
affordable. Mobile robots however have to operate on a much more complex world
and need to be able to accurately track humans in order to interact with them.
There is a huge market demand for household robotics especially if one takes
into account future demographic projections for the ageing populations of western
nations and although we are now seeing the first attempts on such projects there
will still be a lot of room for improvement. Vision algorithms are also bound
to mature and evolve to become better accommodating as adoption of household
robots becomes more widespread.

Even without taking into account the robotics industry, a multitude of other
industries can benefit from robust 3D human tracking. Most of them are currently
using simple sensors and approximations to partially facilitate the functionality
that can ultimately be provided by a robust human tracker. Just to briefly name
a few others, movie industries have been long using CGI effects in order to re-
duce production costs while producing visually spectacular movies. Most of them
are based on tracking acquired using motion capture suits in studios with very
expensive setups. High quality body tracking using off the shelf devices could
dramatically cut down costs and enable smaller movie studios to better compete
in the entertainment industry. Security cameras that typically have very limited
computing resources available rely on simple movement detection or at best simple
face detection, body tracking could enable much finer logging. Medical applica-
tions that require measurement of human motion for rehabilitation use invasive
mechanical sensors or manual logging and can be greatly simplified. Sign language
recognition is still a largely unsolved problem, sports rely on humans judging the
legality of athlete interactions that happen during the game but also during train-
ing. Commerce and on-line shopping could really benefit from virtual dressing
rooms or track consumer behavior on stores and storefronts optimizing shelf space
for increased profits.
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1.2 Problem specification

We are aiming for a framework that can facilitate high quality marker-less 3D body
tracking by observing a person through a single RGBD Camera. Tracking should
be robust to self occlusions or occlusions by other objects that may be present on
the observable scene. There should be automatic initialization of the tracker as
well as a way to recover from tracking errors. The computational complexity of the
tracker should allow it to operate at interactive frame-rates of at least 10 frames
per second. Finally we would like the tracking procedure to require as minimal of
a prior setup as possible.

To better formulate our requirements the proposed method we will operate on
an input stream of color and depth images. An RGBD frame pair is denoted as
0o = (c°,d°), where ¢® and d° stand for the RGB and depth frames, respectively.
The output of our algorithm will be a parameter vector h that will fully encode
the position and orientation of the observed human H. As time progresses and
we receive new RGBD pairs o = (¢°,d°) and for time t our prior state such as
hi—1,hi—2, /etc may be used to further help tracking but we should always be able
to provide a tracking vector even with no prior state, which is the case when a
new person enters a previously empty scene.

1.3 Related work

As reported in [58], discriminative human pose estimation methods [106, 8, 103,
80, 105, 112] map a set of extracted image features to the human pose space. This
is achieved through training over a large database of known poses. A variety of
methods is defined based on the employed features, the mapping method and the
actual training poses database. Recent approaches based on CNNs have produced
very promising results [92, 124, 48, 55, 93, 13, 120]. A very recent work is VNect [55]
which uses a convolutional neural network to acquire a 2D pose from an RGB frame
and then performs regression using a kinematic skeleton to estimate 3D joints from
the data. Although performance is real-time and output quality is very good, the
lack of detailed knowledge about the tracked model and the absence of depth
information have a negative impact on accuracy. The LCR-net [93] is another
detection plus regression framework which converts 2D proposals from RGB images
to 3D joints but lacks the high quality model and 3D rendering capabilities that
are permitted when an RGBD sensor is used. Discriminative methods perform
single frame pose estimation, so they don’t rely on temporal continuity. Thus,
they do not require initialization and they don’t suffer from drift. Their offline
training is computationally demanding, while their online runtime is rather good.

Generative approaches [22, 18, 20, 86, 26, 25, 117, 16, 56, 127] use a model of the
human body and estimate its position, orientation and joint angles that bring the
appearance of this model in accordance to the visual input. The model is usually
made of a skeleton and an attached surface, which in some cases [26] is allowed
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to deform. Instead of estimating the full body model in a single step, a variety
of methods first identify body parts. Then, they either report them as the final
solution or they further assemble them into a full model [103, 105]. Generative
methods rely on an objective function that quantifies the discrepancy between
a model pose hypothesis and the actual visual input. The minimization of the
objective function over the possible poses, determines the one that best explains
the available observations. This amounts to the exploration of the high dimensional
space of human poses. The size of the search space can be reduced by employing
kinematic constrains based on biomechanical data that exclude non realistic poses.
Further reductions can be achieved by constraining also the dynamics, i.e., by
employing Kalman filters [59]. However, this requires learning of the dynamics of
specific human motions and thus reduces the generality of the approach. Another
way to deal with the high dimensionality of the search space is to perform local
searches in the vicinity of the solution of the previous frame. This works fine under
the assumption of human motion with temporal continuity. However, the violation
of this assumption may cause drift and track loss. Local search also means that
tracking needs to be initialized for the first frame. Due to their generative nature,
the computational cost of the online process is typically high. On the other hand,
the employed model can be changed easily, and the whole search space can be
explored without the requirement for offline training.

Hybrid methods that integrate discriminative and generative components have
been proposed [32, 2, 27, 79, 121, 125, 57] to combine the benefits of both words.
Hybrid methods achieve the accuracy of the generative ones without need for
initialization and with robustness to tracking failures. The method proposed in this
work falls in this category of human pose estimation methods. A good comparative
overview of many human perception methods can be offered by [62] and [14].

1.4 Our approach for a solution

In order to properly formulate a proposed framework, we need to be able to ad-
dress each of its specified requirements and provide some background information
from the literature. In general markerless body pose estimation can be broadly
taxinomized in two major categories, generative and discriminative approaches.

Although all of these methodologies will be thoroughly assessed in the next
chapters they are briefly mentioned here right after the problem specification in
order to help the reader comprehend the early design decisions for the formulation
of the tracking framework.

1.4.1 Body detection and tracking

Generative body pose estimation techniques formulate an optimization problem
to be solved by having a parametric model that corresponds to a comparable so-
lution to our observations. They then treat the problem as a regression through
the optimization space where we constantly try to minimize discrepancies between
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observations and hypothesis. This is typically a very good methodology to follow
especially when we investigate small search spaces that are close to a global opti-
mum solution. On the other hand as the search space grows larger and our samples
are far away from a solution they might not converge to the correct solution.

Discriminative body detectors on the other hand leverage large pre-learned
training sets and work directly on the raw image input, dismissing areas that
greatly differ from the learned set and selecting others that are close to it, they
typically are less precise but can more efficiently scan a bigger search space and
substitute the need for a carefully crafted parametric model of the solution with a
large training set.

Since we require automatic initialization as well as error recovery it was im-
mediately evident that some sort of discriminative body detector would have to
be employed at least for those 2 scenarios. However in order to perform the fine-
grained tracking of our goal a generative approach would also be desirable to refine
the detected bodies. The improvement offered by the generative method of course
would depend on how close our hypothesis could match the real world observation.

1.4.2 Providing the tracker with high quality models

There have been various works that thoroughly model, digitize and animate human
bodies and human parts such as the face, hands and hair etc. Although generic
models that can be modified to fit specific criteria like height, weight are not
uncommon, in order for our generative component to render hypothesis closely
resembling reality we wanted to be able to go as far as actually mirroring the
observed human body. Thus our human model had to actually come from the
observations and not be a generic mesh.

This meant that there would have to be provisions for 3D scanning the person
and a way to convert the 3D geometry to a skinned and articulated 3D mesh
that could finally be rendered and closely resemble our observations. Using this
automatically 3D scanned model despite operating on a “marker-less” body, the
detailed knowledge of its 3D structure would theoretically make our tracker operate
like “having markers” since the unique shape of each body should make it easier
to be tracked.

Acquiring the 3D scanned model could theoretically be done on the fly during
tracking. We could initially start tracking using a generic human model and as
we would sample new observations we could mold the generic model into a more
precise model tailored to our observations. In case of errors during the simulta-
neous tracking and 3D modeling however these errors would have a very negative
impact that could lead to a catastrophically bad model that would in turn lead to
complete failure tracking. Another more modest strategy would be to have a brief
first stage where we would only do 3D scanning and only after this stage concluded
move to the tracking stage. This latter idea would make both scanning more ro-
bust as well as decouple tracking errors from the model where they would tend to
accumulate. Unfortunately it would slightly inconvenience users since there would
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be a slight delay before tracking but that would of course only be experienced the
first time tracking a new person. Consecutive uses of the tracker would not suffer
from any overhead since human bodies tend not to change very rapidly. In case of
a significant change caused by a different set of cloths it should be easy to switch
to the first step again, get a new scan and then proceed again to track with the
updated model.

1.4.3 Fusing the parts to a single framework

Our goals lead us to shape the final solution with the following formulation. We
will use a 2 stage architecture that will isolate scanning from tracking for the
reasons explained in the previous paragraph. The first stage will observe a person
for a few seconds and acquire a 3D model . This should only be done once per
person and could altogether be omitted by opting to use a generic human model
in case of scanning failure. The second stage will be to perform tracking using the
personalized model which will also consist of two separate logical steps. The first
sub step will be human detection and the second human tracking working on prior
detections and tracks. The decoupling of scanning from tracking will be beneficial
towards performance since all of our computational budget will be distributed and
dedicated completely for each of the tasks. That being said though the second
stage will also need to be hardware accelerated with GPGPUs in order to meet
our interactive performance requirements although we can tolerate a relatively
slower scanning step since it will be seldomly performed.
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(a) (b) () (d)

Figure 1.1: Overview of the proposed approach for 3D human pose estimation. (a)
The input to the method is a sequence of RGBD frames. (b) We leverage mod-
els that can be acquired easily [102] and yield personalized, parametric, skinned
human bodies [21]. (c¢) We also employ state of the art estimation of 2D human
body joints [13]. We define a hybrid approach for fitting the model (b) in the
observations (a) given the hints provided by the 2D joints estimation (c¢). The
result of this process is visualized in (d). The gray skeleton is the neural network
suggestion and the yellow is the result of the proposed approach. Although the
neural network estimation is far from the ground truth, the obtained solution is
better because of the high quality model and the utilization of depth information.
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3D Reconstruction

3D reconstruction is defined as the process of capturing the shape and appearance
of real objects in a digital form. Creating a virtual version of a real object enables
computers to perform complex operations on the vertex data and transform it
at will. In our case the object we want to digitize is a human body. A virtual
representation of the body will enable us to use it as a tool for tracking a real body
observed in the real world. If the model can change its shape in time, and this is
the case for humans that can bend, twist and move their limbs, this is referred to
as non-rigid reconstruction.

Humans have always been trying to replicate their surroundings and evidence
of that appears since the earliest known human history with cave drawings. The
works of all classic artists and our sense of history much relies on these sculptures
and paintings during Greek and Roman times and after seeked to immortalize
the human form from volatile flesh to marble and metal. 3D Reconstruction can
be though as an even more timeless representation since objects become purely
mathematical and abstract collections of points in space.

Digitization of real objects has been one of the earliest applications for com-
puters with Ivan Sutherland‘s “Sketchpad” in 1963 being the first digitization tool
that relied on manual input of coordinates of the structures modeled. This lead to
more applications that were initially used for better design and manufacturing of
industrial parts during the 1980s. Although not relevant to this thesis it is impor-
tant to state that today the Computer Aided Design industry or “CAD” is a multi
million industry that offers tools that are essential for Architects, Engineers and
other disciplines. The recent advent of 3D Printers has further increased the need
for this accurate representation of objects this time with the goal of replicating
them with the 3D printer. In contrast to the simpler models that “CAD” target
with an immaculately detailed scale and 1:1 mapping of the 3D coordinate of any
point on the object’s profile to the real object, 3D reconstruction of humans was
initially mostly been practiced in the domain that is generally called 3D Modeling.
Instead of CAD's focus in scale and measurement details, 3D Modeling was and
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Figure 2.1: Left: Edwin Catmuls digitized hand, circa 1973 Right: A decade later
sculpture artists create a physical 3D human model and digitize it, circa 1988 .

is more aesthetically focused and used in a wider variety of fields, such as Com-
puter Graphics, Computer Animation, Virtual Reality, Special Effects for Films,
digital media, etc. The first 3D representation of a human in a computer was the
“Boeing man” in 1960 by William Fetter while Frederic Parke created the first
3D human face in 1972 and Edwin Catmul created a digitized hand in 1973. All
of these early reconstructions relied on drawing lines using ink markers on top of
the human skin or building human models made out of clay, and then manually
digitizing them using light pens as the input source. In order to animate facial
expressions across time the procedure was repeated for each one of the frames and
the final animation was the playback of all of the recorded states rasterized and
then rendered one after the other on a TV-screen.

Gradually, digitization shifted from the fully manual input of every vertex for
every frame to the use of motion capture suites that featured easily identifiable
fiducials and calibrated camera sets that viewed the scene from various different
angles. This required a costly setup but it did not only made the capture of
motions easier and more realistic but it also encoded them as a series of incremental
transformations that could be applied on any digitized mesh. The target meshes
themselves still came from artists that digitized physical models and textured them
accordingly using photographs to make them appear more diverse and realistic.
This gradually led to life-like digital avatars that populated virtual 3D worlds in
computer games and that started to become so detailed that made it possible for
them to appear next to real actors in block-buster films like the Lord of the Rings
in 2002 and even TV series in more recent studio productions such as Game of
Thrones 2011.
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2.1 Basic concepts

As stated in the introductory chapter 1.4.2 in this thesis we are only interested
with rigid object 3D reconstruction in order to acquire a high quality 3D hu-
man model. The reader however, might have come across 3D reconstruction in a
different topic since it can also referenced in the literature as SLAM (Simultane-
ous Localisation and Mapping) which is a more fitting term when talking for the
much more unconstrained problem of reconstruction of indoor or outdoor spaces
for robot navigation. Other synonyms are SFM (Structure from motion) or MVS
(Multi-View Stereo) which specifically target moving or stereo camera setups, spe-
cific subdivisions that have different terms due to their different constrains. Of
course in our context we will not deal with any of these problems but they share
the same mathematical background and are mentioned here to provide useful con-
text and disambiguation. Many of the citations in this section are works that
initially targeted different scenarios than our 3D human reconstruction but all of
which have ultimately contributed to net improvements in all 3D reconstruction
applications.

A great book for the reader to become familiar with the basic concepts for 3D
reconstruction is Multiple View Geometry in Computer Vision [29] that thoroughly
covers the topic. In order for someone to gain the foundations to sufficiently
understand the linear-algebra used in the book, [81] is a good source for Linear
Algebra foundations and [24] can help understanding 3D transforms and provide
basic knowledge of 3D graphics and computer rendering.

Our scenario involves an RGBD camera which makes reconstruction more
straightforward when compared to the general case of RGB cameras. The depth
information we have available offers more constrained data to work with and this
makes the reconstructed output more dense and more accurate. The general case
of reconstruction has to simultaneously deal with two problems. The first is calcu-
lating the ego-motion of the camera from frame to frame or “visual odometry” as
it is called in a SLAM context. The second is to try and extract an estimate about
the depth of every pixel in every view which will be ultimately combined in a single
final mesh. If we are working with a camera with unknown calibration parameters
a third problem is also implicitly included since the camera calibration parameters
need to be found since they are required in the computations performed. Depend-
ing on the scene and the number of salient features the quality of reconstruction
might greatly differ and typically a 3D scene is incrementally updated with voxels
(3D pixels) as they are accumulated in computer memory to form the final result.

Having the luxury of an RGBD sensor provides us with calibration information
and more importantly with a depth frame for each view. This makes the recon-
struction problem significantly easier than the general case. Assuming a perfect
sensor with precise depth information would make the problem devolve to just
the calculation of ego motion. However the depth frames extracted by the sensor
suffer from noise as well as artifacts caused by specular reflection of the infrared
signal that the RGBD sensor emits. We are thus left with two problems to face
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one being ego motion and the second a way to integrate multiple received depth
frames to gradually clean artifacts and fill empty regions.

2.2 Reconstructing indoor spaces and rigid objects

Despite the fact that we are approaching 7 years from the release of the origi-
nal KinectFusion paper [64], it remains the most well suited and state of the art
method for reconstruction due to its simplicity and extremely good architecture
that uniquely complements commodity hardware. It was made specifically to lever-
age the capabilities of the Kinect RGBD sensor as well as modern GPGPUs. It is
widely used and has a variety of implementations with the most notable being the
closed-source Kinect SDK version which is now part of the Windows Operating
System as well as an Open Source implementation in the PCL framework [98].
The original Kinect Fusion paper[64] has been improved in various ways over the
years that mostly address resource consumption and make it more extendable for
reconstructing larger spaces. There have been works that introduced Octrees [35]
or Voxel hashing [67] to make mapping more scalable and memory efficient. Works
like Kintinuous [122], and Moving Volume KinectFusion [95] tried to dynamically
tile the rendered output to accommodate larger structures. Finally works like
Real-time non-rigid reconstruction using an RGB-D camera [128] focused on non
rigid objects and Dense visual SLAM for RGB-D cameras [42] improved recon-
struction by leveraging photometric and depth error across all pixels. Finally
SLAM++ [100] introduced an object graph where identified and repeated objects
would boost output quality and Kinect noise modeling [66] was used to improve
sampling, a technique that in turn improved output quality.

As stated despite a lot of work that has been done on improving the method our
requirements for scanning a single human fall very much inside the capabilities of
the original Kinect Fusion algorithm and the extensions provided by the scientific
community would not benefit us. The scale of our scan is very small and the
distance we are working on (0.5m - 1.5m) is one that has the smallest amount
of depth noise as seen in figure 6 of [66], since Kinect was originally specifically
designed for watching humans from similar distances.

1 a = 1y
ICPMat'rix = [ R T ] = — 1 ﬁ ty (21)
0 _B 1 tz

The Kinect fusion algorithm separates the problem of camera motion estima-
tion from the model updates, a tactic that was popularized by PTAM [43]. Camera
Motion Estimation is performed using ICP (Iterative Closest Point) [6] that solves
the problem by reformulating it as a non-linear optimization problem where the
closest points between tested orientations of frames are used to iteratively align the
surfaces in question. The matrix computed during the ICP operation can be seen
in Equation 2.1 and has a distinct form for its rotation component, that is easier
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Figure 2.2: Metric Space of the Voxel Storage, Resolution of the Metric space,
Visualization of the TSDF.

to calculate and suitable for small angle differences between consecutive frames.
The last column translation part is encoded normally but the first 3x3 part of the
matrix encodes rotations using just three variables a 8 and 7 in order to make
fitting more efficient. In case of larger motions and ill-posed data however kinect
fusion enters a “lost” state where it will wait until relocalisation is achieved.

The GPU implementation of ICP used by Kinect Fusion enables it to achieve
this on a framerate that matches the image acquisition framerate. Being able to
derive a transformation from each newly observed view to a single World Coordi-
nate frame then leads to the next problem of how to store the accumulated mesh.
Kinect Fusion uses a voxel space that encodes samples with a truncated signed
distance function (TSDF) representation and a threshold that is denoted as pu. We
can imagine this as a way of thresholding while also trying to model both currently
unoccupied space and the uncertainty of the sensor readings for each point.

The presence of the TSDF map allows the Kinect Fusion algorithm to predict
the incoming surfaces from the depth sensor. After acquiring a new pose estimation
using ICP this predicted surface is compared with the observed depth by casting
a ray through every pixel in order to accurately update the map.

This concludes our brief summary of the Kinect Fusion algorithm. As stated
before we are only interested in its fundamentals since our subject is not mapping
indoor environments but fully focused on a single human. For this reason a lot
of its implementation details have been omitted since they are out of the scope of
this work and are readily available in the original paper [64] for anyone that wishes
to delve into the details.

2.3 Reconstructing rigid human meshes

In contrast to Kinect fusion where we are dealing with a freely moving camera,
and although the body tracker should be able to track humans even from a moving
camera, during the scanning phase we assume that we will be operating from a
static vantage point. We want to have the same reconstruction quality as Kinect
Fusion but we also want to be able to scan the human without the help of a
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Figure 2.3: Left: A successful reconstruction. Middle : Successful reconstruction
but wrong T-Pose by the subject. The arm vertices are connected to the torso,
this mesh will exhibit severe artifacts around the arms after the automatic rigging.
Right: Subject moved both of his arms during scanning and articulated reconstruc-
tion could not repair them. Their volume no longer corresponds to observations
and tracking will be adversely impacted .

separate person that will hold the camera to complete the 360 degree scan. There
have been works that involved three Kinect sensors that are used along with a
turntable [111] ot just two Kinect cameras [126] to solve the problem, but this
is something that is not feasible in our single camera case that shouldn’t require
any additional tools. Another difference from the regular indoor mapping and
tracking scenario is that humans may find it difficult to stand completely still
for an extended period of time and movements in the Kinect fusion modeling are
ultimately handled by averaging. That design choice is good for some input cases
but can produce noticeable artifacts with rapid motions in brief scanning periods
resulting in characteristic “faded” body parts seen in Figure 2.3.

In order to satisfy all these requirements we chose a framework [102] that
uses the motor of the Kinect camera to provide two different vertical views from
the same body pose of the subject and thus only requires the subject to sit still
in 4 orientations. The method involves audio output giving the subject audible
commands in order to know when to sit still and when to perform a 90 degree
rotation. The meshes are then automatically fused using Kinect fusion and a
form of super resolution is achieved by integrating 200 frames per view. There is
limb segmentation that helps reduce artifacts from the reconstruction of limbs that
might have had slightly moved during the scan and the floor is removed by fitting a
plane on the output depth with RANSAC [23]. Poisson surface reconstruction [41]



2.4. FROM RIGID HUMAN MESHES TO ARTICULATED MODELS 15

is applied in order to extract a watertight mesh that also contains color information
from the RGB camera. The final output is a rigid and watertight 3D mesh with
colors per vertex that is metrically accurate.

2.4 From rigid human meshes to articulated models

The human model extracted using [102] can only be transformed with basic 3D
transformations since it is rigid. We want to create a deformable version of it
where we will be able to configure all of the joints and limbs in order to make
different poses that will facilitate our tracking search. Rigging meshes can be done
manually using 3D modeling software that can create bones and associate them
with the underlying geometry. In our case however we want the procedure to be as
fast and automated as possible and to these ends [21] is perfect for our requirements
but also exceeds them by allowing reshaping that could in principle ensure that our
extracted model could always be fine-tuned to compensate for changes in weight
of the subject that can happen during a course of months or years. The selected
framework [21] uses SCAPE [1] in order to create a morphable human model .
The rigid 3D human body is fitted to the morphable human model produced by
SCAPE [1] and mesh correspondences are established. These correspondences can
transfer both skeleton and skin binding weights from the template mesh onto the
input scan to generate our fully animateable human body.

Our final result is a mesh that has a hierarchical skeleton with associated
weights from each joint to each vertex. This articulated model can be configured
at will by supplying 4x4 transformation matrices per joint and recursively applying
the transforms on the vertex data of our model. The poses we choose can be thus
rendered and rasterized as RGB and depth frames and if we choose calibration
parameters that correspond to our camera we can have render output that is
directly comparable for pixel-by-pixel comparison with unfiltered Kinect camera
input. This will be our basic generative tracking building block and the quality of
the tracking will be directly affected by the quality of our articulated model.

2.4.1 Improving blending using dual quaternions

It would appear that at this point we have concluded our articulated model for-
mulation, however there are still issues that we can improve. Since our method for
acquiring and skinning the rigid human mesh is completely automatic, there are
a visual artifacts like candy-wrapping and elbow-collapsing that can be caused by
linear blending of the skinned model. These can be mitigated by manually rebal-
ancing the vertex weights (which can be a very time consuming task and breaks
our requirements) or by using a better method of blending which helps makes
weight inconsistencies much less pronounced. A good improvement with hardly
any performance sacrifice and minimal implementation overhead can be achieved
by using dual quaternion blending [40].
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Figure 2.4: Left: A human body that is being represented with 1845 vertices and
7402 faces. Middle : The same body with 8708 vertices and 34848 faces. Right:
The original scanned resolution with 50778 vertices and 203124 faces. We notice a
substantial increase in geometry complexity that has much less pronounced impact
in the observed silhouette of the 3D model for the T-Pose. However skin weights
can be adversely impacted in the step of skeleton rigging from our decimated
geometry. In this work we use the full quality model since we are interested in
maximum accuracy, there is however space for performance optimization using a
less detailed model, that will be faster to render and evaluate.

2.4.2 Choosing the correct vertex count

Another point worth considering is the vertex count of our geometry. Although
modern graphics cards can handle massive amounts of polygons passing through
complex shaders the complexity of our meshes can have a small but noticeable
impact on rendering times. Given the fact that Kinect depth input includes noise
and its resolution is VGA, (with an even smaller bounding box of the observed
human) having an oversampled model might just prove to be a waste of resources.
We can use edge decimation in order to reduce vertex count and create simpler
versions of the original mesh. The visual difference of the resulting renderings
with different levels of detail can be seen in figure 2.4 where even if we go as far as
removing 97% of our initial triangles, the human silhouette and depth map remain
relatively unchanged. The most affected aspect of the mesh is its skinning as
reduced polygon counts make artifacts more pronounced. Although there is space
for optimization in model simplification we will delve into the subject cautiously
by just assessing the benefits and problems caused by reducing the level of detail
of our model. Our original mission is to use the highest quality model attainable
and willingly over-reducing it can be counter productive to our goal.
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2.4.3 Representing orientations

An important decision we need to make is how to encode joint rotations. Mathe-
matically the best way to encode them is to use quaternions or 4x4 matrices that
do not suffer from Gimbal Locks. The quaternion/matrix format however con-
tains configurations outside of the physically possible configurations of the body
that are difficult to be filtered by composite rules. Another problem is that in
order to specify a quaternion or 4x4 matrix one needs to provide many parame-
ters which will add unnecessary degrees of freedom to the parametrization space
and ultimately our optimization problem as we will see in later chapters. Human
joints, on the other hand, are severely limited in their motions and most joints
can rotate in just one or two axis. Due to these natural constraints that auto-
matically prevent gimbal locks, we are safe to use euler angles to represent our
joint rotations. Euler angles are much easier to constrain and filter and have the
added benefit of being directly transferable as motor commands in applications
like humanoid remote control. One of the early testing applications of this work
was tele-operatation of a NAO humanoid by mirroring the skeleton pose. Instead
of using inverse kinematics to derive angles from joint positions this parametriza-
tion scheme can be directly used although knee and hip orientations can result in
the robot falling off balance and typically only upper body angles are used.

2.4.4 Choosing a file container for our models

The output of the Fast Avatar Capture [102] rigid reconstruction uses the Stanford
Triangle Format [113] (or Polygon File Format, .ply as it is commonly known) that
was initially released in 1994, is well documented, easy to parse and offers both
ASCII as well as binary representations of the geometry. This file format however
lacks any accommodation for skinned models, vector weights, joint hierarchies,
motion limits and other things that we need to keep as part of our stored model
and its state. During the conversion of the rigid model to its articulated version
[21] the model is converted to COLLADA which is an xml based format originally
drafted by Sony Computer Entertainment, Khronos group and a consortium of
3D developers. Although COLLADA is widely supported, well documented and
standardized, the same does not hold for the various modules of graphics tools that
handle import and export from other representations. This fact combined with
many of the COLLADA features being incrementally added to the file format,
often create problems which were also present during our experience. Although
the Autorigging and Reshaping tool [21] could provide output that was flawlessly
imported in the USC SmartBody suite that was not the case when imported in
the popular Open Source 3D Modeler Blender, or the OpenMesh tools. These
COLLADA importers needed various scale changes, lacked color information on
some editors and small conversions had to be performed in order to make the
model appear correctly. Another negative of the xml nature of COLLADA was the
unnecessarily large file sizes. We ended up creating a small Open Source container
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format that is called .tri that shrinked the 25MB collada 50k vertice models down
to 4MB, it is compact, very easy to interface since it is written in pure C does
not need external libraries to compile, and can hold all of the information. This
file format is documented in Section 6.2.2 that covers the technical details of our
framework and groundtruth and provides the required links.



Chapter 3

Human Body Detection

Humans depicted on digital images exhibit regularities and patterns that are im-
mediately apparent to any human observer due to our innate abilities. These
patterns of course are also reflected on camera sensors as light intensities or 3D
points the raw captured RGB and depth image data. The variability of the human
figure along with the lack of a way to efficiently group and label all possible com-
binations of pixel clusters in contemporary computers prohibits an explicit general
solution to these problems. It makes sense thus that the first and most straight-
forward approaches to facilitate object and human detection by computers would
be to create programs that can derive their own rules for accepting and rejecting
image regions based on example sets that we can provide with guides of what we
want to recognize. This idea is generally referred as machine learning or pattern
recognition when specifically talking about image patterns and computer vision.

There are a lot of interesting ideas and applications that try to tackle the
problem and they can be divided using multiple criteria. Their need for human
supervision, the class of algorithms that they use to formulate a solution, using
probabilistic, symbolic or logic based methodologies etc. In the same manner as in
the previous section we will provide some context for different methods. However
due to the vast range of methods in the machine learning field, it is out of the
scope of this text to adequately cover all of them, so we will instead focus on the
most important techniques that are geared towards human detection and as stated
in the introduction chapter, we will ultimately divide them to discriminative and
generative methods.

3.1 Discriminative methods

Discriminative methods are modeling techniques that try to derive a result = by
leveraging an observation o and a knowledge function P(x|o) that can help approx-
imate = from o. As already stated, the function P can vary from a purely statisti-
cal and probabilistic mathematical function to a dynamic programming algorithm.
What is common between all methods regardless of the exact method details, are
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Figure 3.1: Top Left: Highlighted solution over an observed frame. With green
color we have highlighted the correct location of each of the body joints which is our
ground truth. With gray color we have highlighted the joint positions as estimated
by the chosen Neural Network Discriminative human detector. Although they are
not totally inaccurate they are still relatively far away from the true solutions.
With Yellow we can see the joint colors that have been refined using a generative
method that are much closer to the correct solution and thus mostly occlude the
green markers. Top Right: The observed Depth Map contains both background
and foreground. Thus a generative component would find correspondences with
other objects in the scene as well as our target, discriminative methods on the
other hand given enough training can completely reject background and are much
less prone to false positive results. Bottom : A batch rendering of 64 random
configurations of a human body that adhere to our movement limits and are close
to the previous known configuration. The depth color has been inverted to make
the figures more visible. Our configurable 3D body model will be used to form such
hypothesis that will be iteratively scored, assesed and refined until we converge to
the good solution shown top left.
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the overarching constrains they work with, their performance and ultimately their
overall accuracy at the detection task. From our original problem specification and
our attempt to formulate a solution, the constraints we have and want to cover
are automatic initialization and reinitialization after a tracking error. These two
cases follow the pattern of having an incoming frame pair o = (¢°, d°) and wanting
to derive the person pose x by using a pre-trained algorithm P without any access
to a recent good estimation of the pose.

Discriminative models, do not generate new comparison samples but instead
indirectly compare an observed scene to a training set. If we were to use a gen-
erative method to perform body detection it would involve enumerating all the
possible positions and configurations of the human body and then trying to gen-
erate enough samples to densely cover the whole space. These millions of samples
would then have to be separately tested and compared to the observation in or-
der to find the sample closest to the true observed position and configuration.
Iteratively we could then generate more and more samples as we approach the so-
lution in order to achieve the desired accuracy. This “generative detector” would
of course be a huge waste of resources since almost all of the generated samples
would be far from the solution and would provide little to no hints towards the
solution. They would more or less have random correspondences of depth with the
background geometric volumes as seen in Figure 3.1, and only if our model and
our comparison function are very accurate would we end up with a good solution
after tremendous effort. On the other hand discriminative methods although ulti-
mately limited by their training sets have an architecture that allows far superior
performance when examining large areas of solutions since they perform far fewer
computations.

3.2 2D body detectors

Our use case has a relatively rich camera setup since it also includes depth in-
formation. However as we will see historically this was not the case and it still
isn’t. The majority of camera systems are monocular and only contain color or
even monochrome information. 2D body detectors typically rely only on a color
¢° observation and their output consists of a vector of 2D points or 2D bounding
boxes that describe body parts in the image plane as seen in Figure 3.2.
Bounding box output is typically faster to compute than 2D articulated skele-
tons since it skips the computations required to derive the exact locations of each
of the limbs and just provides an aggregate result. Trackers that produce such out-
put are very useful in applications that require fast detection rates and where the
configuration of the bodies is not useful or important. Examples of scenarios and
applications that can be accommodated with bounding box detections are human
avoidance algorithms for autonomous cars, human detection by household robots
or security cameras which just need to monitor persons. In our case though, what
we want as a final result of this work will be a full 3D configuration of the body so
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Figure 3.2: 2D Body detectors work on 2D color or monochrome images and can
be broadly taxinomized in two families. The one as seen on the left image return
a vector of detected joints. The second is a family of detectors that return 2D
bounding boxes that contain detected persons as seen in the picture on the right.

although a 2D bounding box would certainly be beneficial in order to narrow down
our search space, a 2D vector of joints would provide far more detailed constraints
that can help us achieve our goal.

The detailed output of 2D Body detectors that produce full 2D joint output
gives rise to many ambiguities that have to be properly defined in order to stan-
dardize it. The following list is a concise compilation of 2D body detector features
that are important although frequently overlooked in favor of performance or ac-
curacy metrics :

1. The number of returned joints might greatly differ for different methods.
2. Results may or may not respect physical limitations of human bodies.
3. They may or may not contain information for joints that are occluded.

4. The detector can track specific persons across frames or provide a label-less
list of all visible persons for each frame.

5. Output skeletons may have varying limb sizes for subsequent frames or in the
case of specific person tracking the estimation of the true limb sizes might
be attempted.

6. The detector can provide a vector of confidence values that signals the cer-
tainty for each of the joints.

We would ideally want output that contains at least Wrist, Elbow, Shoulder,
Neck, Head, Hip, Knee and Feet joints. We can tolerate the detector not abiding
to physical limitations, and to provide output with big variations in limb sizes
since our generative component can take care of these problems. We would prefer
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Figure 3.3: Bad cases of 2D body detections that showcase the importance of the
list of detector details explained in 3.2. Left: Incorrect detection on a heavily
occluded pose. Middle: False positive detection on the background. Right: False
positive detection and false negative detection on our foreground.

to be provided with a vector of confidence values or if this is not the case, to have
occluded joints be completely omitted. The generative component will ultimately
treat these joints as a series of hints so not having any sort of information would
be preferable compared to information pointing to the wrong direction. Finally
our end-goal tracker will be oriented towards specific persons (with specific infor-
mation about their geometry) so we could both work with 2D detector output
that just tracks a specific person as well as a list of skeletons from which we can
automatically pick the one that corresponds to the tracked person and omit the
rest.

The latter case can however produce inconsistencies in case a frame exhibits
simultaneously a false negative detection of our tracked person as well as a nearby
false positive detection of a non-existing person detected on the background. This
example can be seen in Figure 3.3 and will have an adverse effect to our tracker.
The simplest way to combat this is to add heuristics that threshold 2D detections
that oscillate too far from previous detections, but adding such filtering rules can
also backfire in case of tracking drift. If our tracker starts to lose track of the
person and the 2D detector is still detecting the correct position we would not
want to discard this helpful 2D detector output because of its distance to our
tracking state and remain lost. Since there is ultimately no good way to recover
from incorrect detections we implement a minimal skeleton selection algorithm
that uses the closest 2D detections and utilize a high quality 2D body detector
that does not exhibit high false positive/negative rates.

3.2.1 Cascade based

One of the earliest, most robust and efficient methods for human detection was
Rapid object detection using a boosted cascade of simple features [118] from P.
Viola and M. Jones. This work dating back in 2001 and still being widely used to-
day greatly reduced the body detection problem complexity by providing a reliable
and computationally efficient way to detect body parts. Its use of Summed Area
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Figure 3.4: An overview of how a HAAR cascade is formed and the wavelets that
comprise it.

Tables speeded up computations and enabled computers to perform arbitrarily
large image region comparisons with constant complexity. On the other hand the
ability to group the cascade into different sequential stages make it very fast when
rejecting areas of the image that contain no faces since only a subset of the whole
cascade needs to be computed. Using this building block along with a cascade of
rectangular areas and a big training set, the algorithm adjusts threshold values
for each of the cascade items in order to maximize fitness on the training data.
These HAAR cascades are typically not full body detectors but just detect human
parts such as the face. The face is easier to identify than a full body since it is
more consistent across different persons and only has one joint, the jaw. Other
details like facial hair, glasses, skin color as well as accessories such as hats can be
included by extending the cascades and training sets. The algorithm is susceptible
to lighting changes and does not generalize well on different skin-tones. Keeping
in mind these limitations it still makes a very efficient and accurate building block
for more elaborate detectors. A cascade of HAAR cascade detectors can be used to
facilitate body detection. These full body detectors typically first perform rough
person detection and outputs regions that may contain persons and then secondary
specialized HAAR detectors work inside these rectangular areas to provide fine de-
tails such as the head, eyes, mouth, hands etc. The final output is typically a list
of rectangular areas that have been detected by the HAAR detectors. As stated
before in this Section we aim for joints and not bounding boxes so our requirements
cannot be met by this method, however it has been a milestone in the computer
vision literature on body part detection problems and thus is rightfully included
in this section.
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Figure 3.5: An overview of how eigenfaces work

3.2.2 Feature based classifiers

A second class of body detection algorithms are those that convert the input
2D image to a vector of features and then classify humans by comparing observed
clusters of features to prelearnt clusters. Some of them utilize SIFT[51] or SURF[3]
feature descriptors in RGB, YCrCb, HSV or monochrome color-spaces [7], [60].
Each of the feature sets can help form a specific human body part detector, and
with the combination of multiple robust part detectors [60] a full human body
detector can be approximated.

All of these methods ultimately try to bypass the problem of direct pixel by
pixel comparison of an observed image with every image of the trained library.
Being able to perform optimization that minimizes the distance of a subset of the
detected features. However they can still struggle with lighting, body articulation
and even facial expression changes in the case of face detectors.

3.2.3 PCA based classifiers

Other methods employ eigenfaces [114] which perform a combination of the ideas
behind the Cascade classifier as well as the feature extraction methods. The big
training set of faces results to a much smaller number of eigenfaces that greatly
reduce the complexity of the problem.

3.2.4 2D DNN neural networks

Finally convolutional Neural Networks, or Deep Neural Networks are the technique
we have chosen [13] as our body detector module since they offer a remarkable new
addition to the arsenal of Computer Vision methods. A great introductory book
on the topic of Deep Learning is [11]. They mimic the organizational structure
and connectivity of vision neurons in animals [54] albeit in a purely mathematical
formulation. The complexity of the detection task is handled by the organization
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of the artificial neurons that react correctly due to the “experience” acquired while
training with sample images. Theoretical research on the topic dates back to 1969
[10] but a practical formulation with tangible results was only produced by Alex
Krizhevsky as late as in 2012 [44]. This however immediately led to the neural
network boom we are experiencing today. A detailed historical survey of DNN
methods is a fascinating read and can be found here [101]. Of course pioneering
work during the 70s had neither the hardware nor the available number of training
sequences to be trained and tested with, and was mostly theoretical and not fit
for working applications. However the foundations for the method were laid then.

This technique frees the computer vision developer from feature selection and
many additional tasks that are needed to facilitate detections and automate much
of the labor required to create a detection engine from a training set while sur-
passing state of the art accuracy.

A convolutional neural network consists of multiple layers of nodes each of
which only receives input from a small number of nodes from the previous layer
and only gives output to a small number of the nodes in the next layer. Each node
has configuration “weights” and a operation “type” which controls the operation
performed on the input data and outputted to the next layer. Training the network
is facilitated by a technique called back propagation [31] which iteratively updates
the node weights of a neural network to achieve better and better classification
scores.

The layout of the Network as well as the types of operations conducted in each
layer are very important to efficiently facilitate learning of the data. The bottom
“classification” layers are interconnected with all of the top layers but very deep
and complex neural network connectivities can lead to the problem of over-fitting
to data. Over-fitting can be described as the network learning how to respond to
all of the training example queries but not having developed the internal structures
that allow it to generalize and cope with input data that is not part of the training
set. Typically thinner networks, networks where the back-propagation procedure
is stopped early as well as networks where the training data is clustered randomly
tend to not exhibit this effect.

The internals of neural networks and the types of layers (convolutional, pooling,
flattening, fully connected etc.) are very important but far beyond the scope
of this work. Back propagation, the method that drives learning is also a very
interesting algorithm to study but again all these details should be covered by a
proper introduction to the topic with a book like [11].

The main caveat of neural networks is that they can sometimes classify input
with extreme certainty extremely incorrectly as seen in [109], [65] and Figure 3.6

This fact in conjunction with their opaqueness is a serious drawback that is
often overlooked due to their overall high accuracy and ease of use. New work
has been done [73] on visualizing their inner workings by trying different inputs
and monitoring which of the artificial neurons get most excited by what input.
Although there is currently no way to formally prove that the output will be
correct for a specific type of input or a good way to hint as to how the structure
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Figure 3.6: Patterns mistakenly identified with very high certainty by deep neural
networks. Image taken from [65].

Figure 3.7: Image of the 22 layer network from [110]. Blue nodes perform convo-
lutions, red pool inputs and yellow perform softmax operations.

of a network could be improved. This means that most of the networks are used
as black boxes and typically creating a new network, most of the time consists of
merging parts of other pretrained networks or combining multiple networks that
are known to perform well for similar tasks in an attempt to re-purpose them.

Another issue that neural networks face is that they require sizeable datasets
as well as sufficient computational resources in order to be properly trained in a
reasonable time-frame. Luckily big internet companies are in a unique position
to handle both a very large number of human generated content (video, audio,
pictures and text) as well as own data-centers that can handle the volume of data.
The already trained algorithms can be also used to automatically annotate new
incoming data thus making it a form of semi-autonomous or semi-supervised (de-
pending on how you look at it) method. As already mentioned, people without the
resources to train a network from scratch can leverage already existing nets and
retrain them for other purposes. New hardware such as the Movidius Compute
stick and the planned Volta Tensor-GPGPU chipsets will offer hardware accelera-
tion for training and classification tasks that will make small scale training more
affordable.
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Figure 3.8: A visualization of the problems encountered if we naively try to directly
re-project 2D joint positions back to 3D using the depth map registered to our color
frame. This is natural since the depth sensor can only sample points in the surface
of the observed volume. Left: This is a very simple case of a cube where we can
see the discrepancy of the real center of the cube with the depth measurement we
get. Right: For a more complex human model of varying thickness, in the best
case all of the 3D points extracted (red color) will lie on the surface of the human
volume. In case of self-occlusions or other occlusions the 3D points will be even
further away from their true location (green color).

Given a very large dataset with training examples they can achieve incredible
classification precision as demonstrated by the LeNet inception classifier [110] with
its 22 layer network in figure 3.7 .

Other positive features of neural networks despite their ability to perform
generic classification with incredibly accuracy in very hard domains, is that they
require little to no pre-processing at runtime. Typically the only non-automatic
parts of them have to do with performing some sort of post-processing on the
output which is also the case in the 2D body detector chosen for our framework.

The method selected as our 2D Body tracker is the [13] which features both
classification for joints as well as confidence affinity fields that contain hints for
joint orientations. Their combination results in a very robust detector that not
only can successfully detect human parts but is also capable of correctly clustering
and grouping up the detections to form full 2D skeletons.

3.2.5 Uplifting 2D bodies to 3D

We have described a variety of methods that can perform 2D joint detection in
RGB images. Our final goal is to use them as cues for our final 3D tracker formu-
lation. However since working with an RGBD sensor gives us the luxury of having
depth maps registered to the incoming RGB images, we can maybe take advantage
of this fact. We already have 2D coordinates that correspond to color pixels as
well as color to depth registration so we can try to “upgrade” our 2D estimations



3.3. 3D BODY DETECTORS 29

to 3D in order to acquire even stronger cues for our optimization formulation. The
easiest way to facilitate this 2D to 3D upgrade is to directly sample the depth
map at the pixel values ouf our 2D detection. We know the intrinsic calibration
parameters of the camera fx, fy,cx,cy and we also have a Depthggmpie for each
of the pixels of our RGB frame. We can thus convert Xsp,Yop to a 3D point
X3p, Y3p, Z3p.

Xsp = (Xop — cx) * (Depthgampie/ fx)- (3.1)
Y3p = (Y2D - CY) * (DepthSample/fY)- (3-2)
ZSD = DepthSample- (33)

This initial naive uplifting to 3D is correct mathematically but unfortunately
the depth map only accounts for the surface of the volumes observed in our scene.
This means that our reprojected 3D points will all correspond to the surface of
the human body as seen in figure 3.8 and will not lie in their true position.

An easy improvement we can perform is to artificially push back all of the points
since having the 3D scan of the body as well as the 2D detector we can calculate
the thickness of the observed body and apply a translation to the reprojected
points. Of course and once again noted, this will still not work for points in case
of serious occlusions but the 3D positions overall will offer us a stronger cue since
they also constrain the scale of the model, and we can handle imperfect alignment
with our generative component.

More information on the reasons behind the reasons of using this 3D approxi-
mation will be offered in the “Framework” chapter.

3.3 3D body detectors

3.3.1 3D DNN detectors

An interesting work that extends the 2D DNN Detectors mentioned in the pre-
vious section is [99]. The DensePose method works by establishing dense corre-
spondences between RGB images and a surface-based representation of the human
body. Its dataset consists of 50K persons from the COCO dataset that are man-
ually annotated and have assigned coordinates of joints to depth surface pixels.
The resulting dataset is then used in order to train a CNN-based system that can
retrieve surfaces even in the presence of background, occlusions and scale vari-
ations. The final system improves accuracy by cascading and yields real time
results. It is important to note that while the main concept remains the same as
the 2D detectors the clever formulation of the 3D correspondences through the
UV parametrization of the body makes an important differentiating factor that
enables 3D output from RGB only 2D input with the only overhead beeing the
extra annotation during the dataset creation phase.
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Features Classification
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Figure 3.9: A summary of illustrations from [104] that give us insight on the
Random Forest classifier. Left: Visualization of features used by the random forest
algorithm which is difference of depth. Right: Learning is facilitated by creating
a forest of binary decision trees that use random samples and feature sets. Each
decision node is selected to provide maximal information gain at each step.

3.3.2 Random forests

One of the most widely and commercially successful 3D body detectors in the
industry, that also coincided with the development of the Microsoft Kinect sensor
was the Random Forest Body Detector [104] from Microsoft Research. It managed
to achieve constant framerates of 200fps on commodity hardware and formed the
core component of the X-Box Kinect gaming platform. The method uses a very big
training set of 500K frames that was acquired by 15 real actors of different body
types that where recorded doing various different activities using a Motion Capture
system. The motion capture system automatically annotated the resulting 3D
meshes that where then processed by a learning algorithm. The training created
a decision “forest” that comprised of multiple binary decision trees 20 layers deep
each. Each of the trees was a basic classifier that could predict the likelihood of
a pixel x belonging to body part class c. Features used where differences of depth
as seen in Figure 3.9 and non-leaf nodes corresponded to thresholded features
while leaf nodes modeled the learned distribution P(c|I,z) where I is the input
image. The reference implementation of the algorithm used 3 different trees with 31
different body parts and 300,000 training images per tree randomly selected from
1 million training images. Each Image had 2000 training example pixels per image
and 2000 candidate features with 50 candidate thresholds per feature. It overall
offered a very accurate method as seen in Figure 3.10 with a very compact way
of performing comparisons and calculating feature values. Up to this day it still
remains one of the most widely used body detection algorithms for RGBD sensors
with various improvements done in its more recent versions that has been included
the Windows Kinect SDK. A secondary notable implementation of the same body
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Figure 3.10: Left: Random Forest body detection classification accuracy as a
function of the training set size. Right: Classification accuracy as a function of
tree depth and training set size.

detection algorithm that has unfortunately been discontinued is the NiTE tracker
of OpenNI Project. It has similar quality to the Microsoft implementation although
it suffers from initial delays when first observing a new body since it requires
calibration for a few seconds before starting to provide detections. This fact makes
the method ill-suited for rapid detections, i.e. when observed persons enter and
exit the scene very fast. A second problem with the method is the very big training
set that requires extensive computation time along with the general inability to
include poses that have not been considered in the initial training.

3.3.3 Dynamic programming

Finally the last category of 3D body detectors are the detectors that use dy-
namic programming and classic image processing techniques in order to perform
detection. A method that demonstrates this is [58] where there are also extensive
comparisons with the Random Forest method mentioned in the previous section.
The input 3D Depth map image is processed through a series of filters which sim-
plify it and then an iterative algorithm fits a human model using the extracted
information. Spatial and foreground segmentation can be easily performed from
the RGBD frame pair since we have depth information as well as camera intrinsics.
Thus the background as well as small disconnected regions can be easily wiped out.
After this initial preprocessing most of the remaining image is foreground and after
the application of erosion filters, corner detection as well as Hough line transforms,
basic shapes of arms, hands and feet can be derived. A model of the human body
along with admissible limb sizes is iteratively fitted until the segmented volume
is sufficiently explained by the detector. The detector can even detect arms with
a fully occluded body and the head is not visible. Overall the method showcases
incredible performance does not need specialized GPGPU hardware and detections
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are robust enough for it to be also used as a gesture detector. Instead of the ag-
gregated training procedure of the other methods we can specify hard constraints
on detection parameters (body dimensions) and fine tune it for specific tasks but
the only down side is that there is no formal proof of the optimality of the result-
ing detector since it does not rely on statistics and mathematic formulations like
random forests or back propagation but instead on a hand crafted rules based on
human observation heuristics and classic pattern recognition primitives.



Chapter 4

3D Tracking

Having covered the fundamentals for 3D human model acquisition and methods we
can use to get a rough estimation of the position of an observed human, the next
step is to delve into 3D tracking. 3D Tracking can be thought as the logical exten-
sion of the detection problem seen in Chapter 3. However instead of dealing with
a very large space where potential humans may be, our search space is much more
limited since we typically know its previous configuration. The second difference is
that instead of just wanting to have an approximation of the position of a detected
subject we are interested in a very precise and fine grained solution. Lastly as the
tracking title suggests the accuracy of the estimations must persist across all of
the visible motions in the view-port of the camera regardless of movement that
may also contain temporary self-occlusions.

4.0.1 Direct Linear Transform (DLT)

Starting with the simplest case of a rigid object with no articulations, and as an
immediate thought when any sort of frame to frame registration via computer
vision comes to mind, the most direct and purely mathematical way to solve the
tracking problem is by using direct linear transformation (DLT). It can sometimes
be more plainly referred as the 8 point algorithm or PnP (Perspective-aNd-Point
problem). Assuming that we have some accurate feature points in the visible
image, DLT is a thoroughly researched and well documented method of obtaining
the pose of a known object. It can work using both 2D as well as 3D constraints
(since 3D constraints simplify the resulting system of equations). The features
used are typically SIFT [50], SURF [4], FAST [94] or ORB [96]. The different
feature sets come with different performance/accuracy treadeoffs and are subject
to different licensing restrictions. The quality and distinctiveness of the extracted
features is of paramount importance to enable the method to produce acceptable
results. The features extracted are matched using a nearest neighbors strategy
like [63]. After having a set of corresponding features the next step is to perform an
iterative RANSAC [23] optimization where error minimization occurs to establish
a good pose estimation. Finally a Kalman filter [77] can be used as a way to
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Figure 4.1: Equation 4.1 visualized assuming a rigid human model. In our case
however the model is fully articulated and so the DLT method does not suffice as
a method to perform tracking.

discard erroneous poses and improve overall tracking accuracy.

Assuming we know the intrinsic parameters of the camera (fy, fy, s, cy) and
having point to point correspondences the basic equation governing a 3D scene
projected on a 2D surface is the following. What we are trying to extract is the
pose of the camera compared to the tracked object (the matrix with the R and ¢
rotation and translation components). Getting the inverse of this matrix we can
derive the transformation of the object in the coordinate frame of our camera.

X
u fz 0 cgf [rn r2 ri3 v

s (v =10 fy cy| |rar r22 T23 12 7 (4.1)
1 0 0 1 31 T32 T33 t3 1

Since the method described in the previous paragraph is one of the most fun-
damental computer vision building-blocks and the reader is probably already very
familiar with it there is no reason to go into further details. The book Multiple
View Geometry in Computer Vision [29] is an excellent source for more informa-
tion for an interested reader and in our case we do not deal with rigid well-textured
objects so it does not offer a powerful enough tool for our generic human tracking
case. It is however a good introductory method for this tracking chapter, it de-
fines a baseline for a single object problem and it could be extended using inverse
kinematics.
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Unfortunately since we are not dealing with rigid geometry but work with
moving and articulated deformeable humans, this mathematical formulation is
not strong enough to cover us. So we must resort to a better way to track the
observed motions, and that way is offered by generative optimization methods.

4.1 Generative Methods

As previously stated in the introductory chapter at sections 1.3 and 1.4.1, genera-
tive model based methods are very well suited for 3D tracking. The most relevant
generative method tackling a similar use-case as our work that also slightly pre-
dates the submission of our paper in WACV18 [82] was VNect [55] and established
a single view RGB based 3D regressor for 2D neural network output. In this sec-
tion we will cover the basics of various prevalent generative techniques that can
be used to perform model based regression and fill in the role of our optimization
function.

4.1.1 Iterative Closest Point (ICP)

The iterative closest point algorithm [5] and its variants [97] are iterative methods
that are easy to implement and that can be used to align two 2D or 3D point clouds
and return the transformation matrix that leads from one to the other. As the
DLT method that was mentioned in Section 4.0.1 they where originally intended
for rigid objects and are widely used for robot navigation and localization as well
as 3D reconstruction.

The vanilla ICP algorithm consists of the following discrete steps :

1. For each of the points in the source 3D cloud we find a match with the closest
3D point in the target point cloud.

2. We calculate a transformation (rotation/translation) that minimizes point
to point distance using a root mean square (RMS) metric.

3. We perform the transformation calculated by the previous step to all of the
source points.

4. We check if average point distance between matched points is less than a
threshold, or we have exceeded our time limit. If not we repeat the process
from step 1 with our new source cloud.

Of course there are many improvements and intermediate steps that can be
added that improve results by rejecting outliers, using different strategies of pe-
nalization, including point weights and many other ideas that boost efficiency and
that can be found here [97].

Although the ICP algorithm is much closer to our 3D tracking target compared
to the DLT method and a version of it is actually used by our offline reconstruc-
tion module. More specifically during the second step of reconstruction when the
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rigid 3D model is skinned. Using a derivative of this method correspondances are
established between the rigid human mesh and the deformable SCAPE [1] skeleton
seen in [21]. Although it is a useful method for offline computations it still suffers
from many shortcomings, mainly its performance since it lacks parallelization and
lacks provisions for articulated meshes (although modifications that handle this
case exist). What is especially problematic is that in comparison to other meth-
ods like PSO (Section 4.1.3) and even if we where interested in just tracking rigid
objects, ICP is both slower and less accurate overall for reasonable optimization
times as seen in this work [123] for noisy depth sources like our low cost RGB+D
Sensor.

4.1.2 Particle Filters (PF)

Particle filtering, also known as the condensation algorithm or hierarchical particle
filtering (in its more popular implementation geared towards high dimensional
spaces), is a technique that has been successfully applied for motion tracking of
articulated objects that include humans [19] and human hands [53]. These cited
works offer a very detailed explanation of the algorithm. The method is relevant
to our problem although out of the scope of this thesis, thus we will just give a
brief synopsis in this section.

Particle Filters perform tracking via the use of an array of models that are
called auxiliary models. These models store and leverage probabilistic information
about the state of the tracking problem. Their state is in turn used to update
a main model which actually holds the tracking result we are searching for. By
integrating incoming frames and re-estimating the probability density as well as
maintaining a likelihood model that compares the current frame we want to calcu-
late with history, the method manages to respond well both in terms of accuracy
as well as performance being able to achieve very fast frame-rates (90fps for a
27dof hand-tracking problem [53]) and be robust to noise. However the dual com-
ponent objective function we planned to use in order to balance the depth and
neural network detections as well as the even bigger parameter size of our detailed
3D scanned model where the main reasons not to choose Particle Filters as our
optimization engine.

4.1.3 Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) [15] is a stochastic method that performs op-
timization by iteratively improving a candidate solution with respect to an error
term characterizing its quality (objective function). PSO has been applied suc-
cessfully to a number of vision problems such as object detection [108], head pose
estimation [75], 3D hand tracking [70, 71], 3D tracking of hands in interaction
with objects [45] as well as 3D human pose tracking [117, 57]. The popularity of
PSO as an optimization strategy for articulated motion tracking comes from its
ability to handle large search spaces and noisy, multi-modal, non-differentiateable
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objective functions. Moreover, as shown in Section 6.6.2, PSO is ideal for parallel
implementation on modern GPU architectures, permitting interactive framerates
and a 100x speedup compared to the serial implementation.

PSO maintains a population of candidate solutions, called particles, that have
a position p and a velocity V in the search space. The movement of each particle
p; is influenced by the best position P; this particle has ever visited up to the
current iteration/generation, and simultaneously guided towards the globally best
known position G in the search space (i.e., the best of all P;s). Both these positions
are updated as better ones are found by other particles. The update to the k-th
generation is described by:

Vik = r1c1 (P = pig—1) + 1202 (G = pig—1) + wVip—1 (4.2)
Pik = Pik—1+ Vik, (4.3)

where p; 1, and V; 1, respectively, denote the position and velocity of the particle p;
at the k-th generation, r; are samples of the uniform distribution U(0,1), and ¢y,
co and w are parameters controlling the convergence speed of PSO. The particles
are allowed to move within predefined ranges along each dimension of the search
space (in our problem, these ranges are shown in Table 5.1). To enforce this
constraint whenever it is violated, the respective velocity V; j is reduced up to the
point that the constraint is again satisfied. These steps are followed iteratively,
until a fixed upper bound of generations is reached. Parameters c;, co and w, are

set as proposed in [15], that is, ¢; = 2.8, co = 1.3 and w = 2/ ‘2 — ) — Y2 — 4
where ¥ = ¢ + co.

For our 3D human pose estimation problem, PSO is used to minimize the
objective function of Eq.(5.2) over candidate solutions h. For each incoming frame,
particles are initialized around the solution for the previous frame. The space
around that solution is made large enough to include the J¢ estimation for the
current frame. This, together with the E; term in the objective function, are the
elements that permit to the method to perform without initialization and to recover
from potential tracking drifts. Perturbations [69] are used for particles during the
optimization procedure in order to help them escape local minima towards the
global best solution. We also keep a history of detections and the last 5 estimated
poses are also considered as particles in every new frame to help us recover faster
from low quality OpenPose estimations that may cause a momentary drift. In
order to evaluate fairly the solution proposed in this paper, no motion prediction
model is used to initialize PSO particles and no smoothing is being performed in
the sequence of results. However, such techniques, are expected to improve pose
estimation accuracy when employed.

)

4.2 3D Tracking with PSO

We selected Particle Swarm Optimization as our optimizer between all other avail-
able options and its detailed examination covered the way it works. What remains
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before proceeding to the Chapter where we will recount the full body tracking
framework is to provide information on the use of PSO on simpler 3D tracking
problems.

4.2.1 The single object case

The simplest case for model based 3D tracking using PSO and an RGBD camera
is the case of a single object. The parametric space for a single object is incredibly
constrained when compared to our articulated body as we will see later. An object
can be described using 7 parameters that determine its position and orientation.
Positions are encoded using 3 coordinates (X, Y, Z) that position the object in our
world frame and orientations are encoded using a quaternion that consists of four
parameters (¢X, qY,qZ,qW). The use of quaternions as a rotation representation
has multiple benefits. The first and most important is that random sampling of
the solution space may easily lead to rotations that contain gimbal locks. Quater-
nion representation does not exhibit this problem. A second positive feature of
quaternions is that their 4 parameters offer a more smooth way to sample interme-
diate orientations since,once again, we consider random samples of quads around
a previous state.

For each combination of 7 numbers we can come up we can render the model
in a virtual depth buffer and retrieve its depth profile. This can be then easily
differentiated to the observation and so we can tag each combination of 7 numbers
with a score. A score of 0 means that the combination fits perfectly to the obser-
vation. Our problem thus is a minimization problem that in the case of a single
object has only 7 degrees of freedom.

4.2.2 Articulated objects and occlusions

Each extra object introduced in the scene increments the parameter space by 7
more degrees of freedom. Ideally we could try to solve the problem by solving
in parallel two instead of one single object problems trying not to invest a lot
of resources to the problem but unfortunately occlusions and the curse of dimen-
sionality do not allow us to get away with this. We cannot treat the two objects
tracking problem as two smaller 7dof problems but have to face them as one 14do f
which is exponentially bigger. The reason why is that when we consider multiple
objects in our scenes but our optimizer only fits a single model hypothesis every
time, occluded objects will never fit correctly to our hypothesis unless the occluder
is also taken in consideration. We thus need to always render all objects at the
same time since only joint combinations of all the objects will render similarly to
our observations. This however means that in order to deal with occlusions we
have to accept an exponentially growing parameter space. The problem becomes
even worse when we consider articulated objects since each of them will further
penalize performance by increasing the parameter space much more than the 7dof
of a simple rigid object. 3D Hands can be encoded using 27 parameters and our



4.2. 3D TRACKING WITH PSO 39

detailed human body model has 36. Methods such as [45] and [85] attempt to
improve the situation but nevertheless the human body tracking problem can be
roughly thought as simultaneously tracking 5 different objects in terms of compu-
tational complexity, certainly not a trivial task.
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Chapter 5

Our proposed tracking
framework

The proposed optimization framework consists of well defined and self-contained
modules that are limited in scope and are dedicated to solving one problem each.
The details of each of them have been covered in the previous chapters and with
that in mind we can now proceede to their combination. Working in tandem
they provide a powerful and robust tool that can facilitate 3D Human Tracking
tracking. A schematic overview of the framework can be seen in Fig. 5.1 and the
proposed method is summarized in Fig. 1.1.

5.1

3D Reconstruction

2D Joint estimation

3D Tracking

Overview of proposed framework parts

As explained in detail in Chapter 2 the 3D reconstruction algorithm used
to recover human models is [102]. The acquired models are initially rigid
and are converted to a fully skinned and deformable model that can take
poses using [21]. All the resulting data is stored using the .tri file format
also described in subsection 2.4.4.

Our problem formulation as seen in Figure 5.1 requires a detector to prvoide
seeds that will become the solutions for each frame. From all of the options
considered in Chapter 3, method [13] was picked as the most robust and
generic detector.

From the optimization frameworks discussed in Chapter 4, PSO was cho-
sen as it both has the ability of dealing with the large parameter space we
are considering as well as the desirable features of escaping local maxima,
very good parallelization qualities that can be leveraged using a GPGPU
implementation and the ability to extend the body model at will as well as
incorporate additional soft limits that can be useful in an extended version
of the problem.

41
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Runs Once

Output 3D Tracked
Body

Runs Every Frame

Figure 5.1: A block diagram that gives a connectivity overview for the various
modules of the proposed framework. Green arrows are raw input from our sensor,
pink arrows symbolize intermediate input provided by a module of the framework,
the red arrow is the final output pose. Our input source is an RGBD Kinect
sensor that provides us with a stream of VGA color and depth images. The DNN
2D Detector, that is described in Chapter 3, only needs the Color stream and
works as a black box that provides us with 2D estimations about joint locations.
Both the color and depth stream are used by the reconstruction module that is
described in detail in Chapter 2. The 4 views of the person are first combined
to a rigid mesh that is then, in a subsequent step, converted to a fully skinned
articulated body model. This procedure only needs to be performed once. Finally
our 3D Tracker receives as input a skinned model, a depth frame and an array
of 2D joints estimations and outputs a 3D tracking hypothesis that matches the
observation of the Kinect sensor.



5.1. OVERVIEW OF PROPOSED FRAMEWORK PARTS 43

An RGBD frame is denoted as o = (¢°, d°), where ¢ and d° stand for the RGB
and depth frames, respectively. The proposed method capitalizes on a parametric
skinned model of the human body (Section 5.1.1). Human pose estimation in a
frame amounts to estimating the parameters of the model that is most compatible
with visual observations. The discrepancy between the model and the observations
is quantified by an objective function (Section 5.1.3) that has two terms. The
first (Section 5.1.3.1), compares the 3D structure of the observed human with the
3D structure of the rendered model. The second (Section 5.1.3.2) compares the
locations of the joints as they were estimated by a neural network (Section 5.1.2)
to the locations of the joints of the model hypothesis. The optimization of the
defined objective function is performed effectively and efficiently using Particle
Swarm Optimization [15] (Section 4.1.3).

5.1.1 Human body model

The proposed method can operate with a human body model that consists of a set
of appropriately assembled geometric primitives as in [57], or with a skinned model.
In this work, we are particularly interested in personalized, automatically acquired
human body models. The acquisition of such a model H is performed in two steps
(a) human body scanning and (b) model rigging. Body scanning is performed
as described in [102]. Model acquisition requires only that the human subject
stands with the T-pose in front of an RGBD camera, in 4 different orientations.
These views are then registered automatically' to form a reconstruction of the
human body. Articulating the scanned model through model rigging is performed
automatically? as described in [21]. From a practical point of view, given the
mentioned automated tools, the acquisition of a body model H can be performed
in less than 2 min.

A body model H acquired this way has a total of 94 bones which also account
for parts of the face, hand fingers etc. For the large-scale body tracking scenario
we are interested in, we restrict ourselves to a subset of those body parts and the
respective joints as listed in Table 5.1.

The 3D position of H is represented with three parameters. Four more param-
eters encode a quaternion-based representation of its global orientation. Joints
are represented with roll/pitch/yaw angles. Thus, a pose of H is represented as
a 3+ 4+ 29 = 36D parameter vector h. The limits of 29 of these parameters are
shown in Table 5.1. Setting these limits excludes several physically implausible
poses. However, certain combinations of valid (i.e., within limits) joint angles still
result in impossible body configurations.

In order to grasp the complexity of the 36D parametric space of body motions
we can devise a simple thought experiment. For our experiment we will assume
that we somehow have a 36D vector that exactly describes the configuration a
person at a particular time. We can also assume that the person will move very

"Human body reconstruction software: https://goo.gl/jFFj6a
?Human body model rigging software: https://goo.gl/AEtX96
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Joint roll | roll || pitch | pitch || yaw | yaw | weight
min mazx min mazx min mazx w;
Neck -0.4| 04 -0.3 0.3 - - 1.0
Spine -0.5 | 0.5 -0.2 0.5 -1.5 | 1.5 -
LC -0.1 ] 0.1 - -1/ -0.15 | 0.1 -
RC -0.1 ] 0.1 - - -0.1 | 0.15 -
LS -4 4 -1.8 | 1.57 2| 14 1.0
RS -4 4 -1.8 | 1.57 -1.4 2 1.0
LE - - - - -2.5 0 14
RE - - - - 0| 25 14
Lw - - - - - - 1.8
RW - - - - - - 1.8
LH -1.57 | 1.57 || -0.78 2 -1.2 | 0.5 0.4
RH -1.57 | 1.57 || -0.78 2 -0.5 | 1.2 0.4
LK - - -2.8 0.1 - - 14
RK - - -2.8 0.1 - - 14
LA - - -0.6 | -0.6 -0.7 | 0.7 1.8
RA - - -0.6 | -0.6 -0.7 | 0.7 1.8

Table 5.1: Limits (in radians) of joint angles of the human body model H. Besides
Neck and Spine, the joints are coded with two letters. The first (L, R) stands for
Left /Right and the second (C, S, E, W, H, K, A) for Collar, Shoulder, Elbow,
Wrist, Hip, Knee and Ankle. The last column is the weight of the particular joint
(w;) when calculating scores in the objective function E;

slowly from frame to frame in order to help our case. In this theoretical situation
each of the parameters can remain numerically the same from frame to frame, it
can increase by d or decrease by d, where d is a slow movement distance constant.
This means we have 3 possible outcomes for each of the joint states from frame
to frame. When we combine all of them this means that the number of states is
3(36) or 150.094.640.000.000.000 cases that need to be checked and discarded until
we can find the correct one. To futher simplify the situation for us and assuming
that we will not examine any non essential body parts like feet or the head, we
can decrease the parameters to 22 which leads to 3(22) or 31.381.059.609 distinct
events. Our hardware allows a maximum of 4096 renderings which can just explore
a fraction of all possible states with acceptable performance. This thought process
can be very enlightning and very indicative of the effectiveness of our optimizer
that gracefully handles this huge parameter space.

Given an instantiation h of the model H and camera calibration parameters,
we can render H to the view of the camera, obtaining color and depth maps
r = (c",d") that are comparable to the observations.
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5.1.2 Localizing body joints

Given a color frame ¢, we employ the OpenPose neural network [13, 120] which
computes the 2D locations j¢ of human body joints. Any source of 2D/3D joint
locations can be used, however OpenPose has been used because of its accuracy
and robustness. We expect the 2D estimations of the joints not to be perfectly
accurate but we also expect the detected joints to have some consistency in the
temporal domain and in relation to each other. Given j¢, we can sample the
depth information d° to get a coarse estimate of the 3D locations J¢ of the joints.
Inaccuracies come from the fact that these 3D points lie on the surface of the
body, while joints do not. Such problems are even more pronounced for occluded
joints, i.e., for the back shoulder in a side view of a body or in cases of crossed
arms or legs. Despite such inaccuracies, a coarse estimation of the 3D locations
J¢ proves useful during optimization. A minor improvement we can do for this
inaccurate 2D to 3D uplifting as seen in Subsection 3.2.5 is to push back every joint
5-10 centimeters inside the body depending on the joint type, this is still a very
inaccurate 3D estimation but it is more than enough as a building block for the
objective function to be initialized and then guide us close to the solution where
the 3D mesh will in turn dominate the scoring function and yield the accurate
estimation we desire.

5.1.3 Objective function

An objective function E(h,0) has been designed to quantify the discrepancy be-
tween a model hypothesis h and the actual observations o. Estimating the human
pose at a certan frame amounts to finding the model parameters h* of H that
minimize E(h,o0). In notation,

h* 2 argmin F (h, 0) . (5.1)
h

E(h,o0) consists of two terms, Ep and Ej. Specifically,
E (h,0) =wpFEp (h,d°) +wyEj (h,o). (5.2)

The first term measures the discrepancy between the observed depth map and the
depth map resulting from the rendering of H according to h. The second term
measures the displacement between the locations (both 2D and 3D) of the human
body joints. The first term is weighted by a constant wp whose value is determined
experimentally in Section 6.6.1. The weight wj is set to 1.

5.1.3.1 The depth term Ep

For a given hypothesis h, we render H to obtain a color image ¢ and a depth map
d". d" is comparable to the actual, observed depth map d° and their similarity
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is a strong indication for a correct hypothesis h. This motivates the following
definition of the error term Ep:

Ep (h,d°) = Zc(uh ), T) (5.3)

peB

In Eq.(5.3), Ep sums the absolute depth differences |dg — dg\ for all points p that
belong to a bounding box B containing the human figure. The clamping function
C(z,T) returns z if x < T and T otherwise. This is used to robustify the error
term and prevent spurious points/outliers from affecting it too much. In our im-
plementation we set 7' = 30cm. It is worth noting that other types of information
which are more stable could also very well be used in the generative part, not nec-
essarily from the visible spectrum but from an infrared or thermographic camera
or another sensor working in a different part of the em-spectrum.

In RGBD camera depth readings, a value of 0 represents lack of measurement
due to e.g., reflective materials or infrared interference. Such points are ignored in
Eq.(5.3).

The normalization term N, requires special attention. Setting NNV, equal to the
number of rendered model points is a bad choice, because this promotes hypotheses
that project to only a few pixels in the image, instead of hypotheses that explain
all the available observations. To avoid this, N, is set equal to the number of
points inside B that are close to the depth profile of the previous solution. This
way, all different hypotheses for a certain frame share the same normalization.
We also maintain normalization which is again important for correctly handling
scale changes. Another helpful step we perform while creating the sum Ny is to
remove pixels that where not included in the count and are also not part of the
rendered hypothesis from the bounding box b. This way the sum 5.3 will exclude
background pixels and will ideally only contain information about our foreground
and all hypothesis pixel making the gradient of the objective function closer to the
truth and easier to traverse for PSO.

5.1.3.2 The joints location term E;

As discussed in Section 5.1.2, OpenPose provides estimations j€ of the 2D locations
of human joints, which can then be lifted to 3D estimations J¢ by exploiting the
depth information d°. Additionally, given a hypothesis h of H, we can estimate the
3D joint locations noted as J”* and also render them in the camera view to obtain
j". Thus, we define an error term Ejop that penalizes discrepancies between the
hypothesized (") and estimated (j¢) 2D locations of joints:

Epp (b szm — 5l (5.4)



5.1. OVERVIEW OF PROPOSED FRAMEWORK PARTS 47

Similarly, we define a term FEj3p that penalizes discrepancies between the hypoth-
esized (J") and estimated (J¢) 3D locations of joints:

1
EJ3D (h,O) = WZwZHth_JzGHQ (5.5)
=1

Some types of joints are localized by OpenPose more accurately than others. As an
example, the head and the knees are more accurately localized compared to hips.
In order to compensate for this behavior of the detector, we employ a weighting
scheme in both the 2D (Eq.(5.4)) and 3D (Eq.(5.5)) terms of the objective function
that prioritizes more accurate joints. We use w; = 0.2 for hips and w; = 1.8 for
ankles and wrists. In Egs.(5.4) and (5.5), W = 37, w;, where n; is the number
of all considered joints.
The aggregated joints location term FE; is defined as

Ejy (h, O) =aFjp (h, CO) -+ (1 - O[)EJgD (h, O) , (56)

where a = 0.97 is a constant that balances the contributions of the 2D and 3D
error terms and which was set experimentally (Section 6.6.1). It appears that this
value of o gives a dominant role to E jop. However, this is not the case, as a needs
to compensate also for the different arithmetic scales in which Ejop and Ej3p are
measured.

For each x parameter vector we can easily go back to our H mesh and re-
cursively calculate the transformations of each of the joints and also get their 2D
projections since we know the intrinsics of the observation camera. This way for
each joint j we can get a direct euclidean distance in both 2D and 3D space that
is our 2D and 3D Neural Network error estimation.

5.1.3.3 Incorporating heuristics to the objective function

Since the main focus of this work is assessing model quality and neural network
importance this objective function serves as a very clean middle-ground solution
where by setting factor values to zero we can switch off the neural (5.5 5.4 or depth
5.3) terms by zeroing Wap , Wsp and/or Weepy, and clearly identify their impact
in tracking quality.

Increasing the value of Wgep, makes the role of the high quality model more
important, while reducing W, close to zero results to the model stops making
any difference since we are just fitting the kinematic skeleton joints to the 2D
proposal of the neural network, A value of zero for Wyep, make this method
perform similarly to Vnect [55] and LCR-Net [93].

It is worth mentioning that object tracking can be easily included by adding a
further 7 dof per object (XYZ and a quaternion) in the parameter vectors and by
supplying a mesh of the tracked object [45]. Although ¢” is chromatically accurate,
color observations are very susceptible to illumination changes, shadows and since
depth information is also present in this work, color comparison is omitted from
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the generative component and only used from the CNN detector. The neural
network 2D joint output will never have a zero distance to our model (since neural
network detections are very good overall but not so accurate), but this term 5.6
of the objective function H is really very valuable as x gets more distant from the

optimal solution and can guide the solution process back to where Depth becomes
Error
dominant.

5.1.3.4 CPU/GPU acceleration for the objective function

The implementation of our framework relies on the MBV toolkit [68] which pow-
ers the rendering and optimization engine utilized in this work. A very detailed
technical report on its inner workings can be found here [46] and will answer most
questions. In the context of our work and trying not to go off-topic a brief overview
will also be given here.

Modern GPU cards are built to perform real-time rendering of immense vol-
umes of polygons. The workload we offload to the GPU for our task is hardly
challenging, novel or surprising. However the main differentiating factor between
this and other methods is the way that hypothesis evaluations are performed since
they turn out to be the most computationally demanding part of any generative
method.

During the development of this method the first and easiest approach that was
implemented to evaluate rendered hypothesis was to render each of them serially
in the GPU and then retrieve them and score them using the CPU in order to be
able to debug the objective function weights and better study and log its behavior.
However this had many negative performance penalties with the most pronounced
being the serial evaluation, the PCI-Express bus bottlenecks between main system
memory and GPU memory and bad resource utilization due to poor concurrency.

The best way to perform the said tasks is to use a technique called deferred-
shading that performs tiled rendering and stores results on GPU texture memory.
These rendered results can be directly scored against our observations using the
CUDA GPGPU architecture and the resulting difference maps can be scanned and
reduced into a numeric score that can be very efficiently communicated back to
system memory to seed the next PSO generation. This way we only use the GPU
bus intensely one time during the initialization of the application when we first
upload our mesh geometry. All subsequent GPU queries just contain the incoming
frame and a list of appropriate transformations for each of the renderings/hy-
pothesis/PSO particles. Concurrency is maximized and every PSO generation is
computed in a very fast parallel step.

The typical speed-up of applications ported from a CPU to a GPU architecture
in the literature is typically 10x but in our case framerates increase from 0.7fps
to 10fps which is an incredible improvement. However reducing the model vertex
count, as well as using less PSO generations as well as better performance from
the DNN 2D joint detector could further improve framerates.
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The following code segment is the Thrust/C++ objective function implemented
at the core of the presented work to enable the objective function to perform depth
scoring in a GPU Accelerated fashion.

//Shorthands to make code easier to read
#define YES 1
#define SMALLEST FLOAT 0.0001

//Structure that keeps all relevant pizel information
struct sample

{
float difference;
unsigned short isCorrect;
unsigned short isExisting;

}s

//Structure that keeps all data results
struct ObjectiveHelperGPU :: PrivateData
{
thrust :: device_vector <sample> perPixelAllInOne;
thrust :: device_vector <sample> sumPerPixelAllInOne;
thrust :: device_vector<int> keys;

}s

//This is the code segment that performs
//reduction to sum up our calculations
struct SampleReductor
public thrust:: binary_function
<const sample &,const sample &,sample>
{
__host__ __device__
sample operator () (
const sample & lhs
const sample & rhs

) const
{
sample summed;
summed. difference = lhs.difference + rhs.difference;
summed. isCorrect = lhs.isCorrect + rhs.isCorrect;

summed. isExisting = lhs.isExisting + rhs.isExisting;
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return summed;

}
i

//This is the function that performs depth difference
//calculation and thresholding
struct SampleCalculator:
public thrust:: binary_function
<float , float ,sample>
{
SampleCalculator (

float depthSampleVariance,

float depthClampMillimeters

):

depthSampleVariance (depthSampleVariance)
depthClampMillimeters (depthClampMillimeters) {}

//We want absolute distance of a haystack(hypothesis)
//sample to the needle(observation) sample.
//The next function is called in parallel for every
//pizel combination and calculates our results.
__device__
sample operator ()(float haystack, float needle) const
{

float result=0.0;

float depthDifference = glm::abs(needle—haystack);

//Result storage for this sample
sample output={0};

//If we have exceeded the mar Variance
//we clamp the distance to the mazimum
//allowed score
if (needle>SMALLEST FLOAT)
{
output.isExisting = YES;
result=depthClampMillimeters;
if (
(depthDifference<=depthSampleVariance) ||
(haystack >SMALLEST FLOAT)

)
{
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output.isCorrect = YES;
result=depthDifference;

}
}

//We also perform thresholding and clamp results
if (result>depthClampMillimeters)

{

result=depthClampMillimeters ;

}

//We return our calculated wvalue ..
//Third output is depth difference
output.difference = result;

return output;

}

//Fields of our SampleCalculator struct
float depthSampleVariance;
float depthClampMillimeters;

}s

This means that after rendering our geometry to textures through OpenGL
and uploading our observation to the GPU we just need to perform one Thrust
transformation to compute all results.

thrust :: transform
(
haystack.begin (), //Inputlteratorl firstl
haystack.end (), //Inputlteratorl lastl
thrust :: make_permutation_iterator
(
//Inputiterator? first2
needle.begin (), //Element to permutate
//Index Iterator
thrust:: make_transform_iterator
(
thrust :: make_counting_iterator (0), //Iterator
nldx //AdaptableUnaryFunction
)
) s

m_data—>pixels.begin (),
SampleCalculator (depthSampleVariance , depthClampMillimeters)

)i
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1

After the transform operation performs all calculations, we end up with an
array (m-data—pixels) that has each pixel depth difference stored in a separate
field.We want to both sum depth differences in order to assess how compatible
each hypothesis is to our observation as well as to calculate the number of rendered
pixels and the number of rendered pixels that correspond to the observation needed
as seen in Section 5.1.3.1. So the last step we need to perform is a reduction
operation that sums up these 3 distinct results. By combining all the relevant
information in to one structure (struct sample) we manage to only perform one
reduction (instead of 3) and further optimize performance. After the reduction
we get a result vector that has three numeric values associated to each of the
hypothesis.

thrust :: reduce_by_key
(
// Inputlteratorl keys_first
thrust :: make_transform_iterator
(
thrust :: make_counting_iterator (0), // Begin
hid
)
//Inputliteratorl keys_last
thrust :: make_transform_iterator
(
thrust :: make_counting_iterator (cloudSize), //End
hid
)
m_data—>pixels.begin (), // Inputliterator? Values First
m_data—>keys.begin (), // Outputlteratorl Keys Output
m_data—>pixelSums.begin(),// Outputiterator?2 Values Output
thrust :: equal_to<int >(), // BinaryPredicate
SampleReductor () // BinaryFunction

)

Finally we retrieve the results from the GPU to the CPU and compute the
final depth score Ep as proposed in Equation 5.3. The Np normalization factor is
computed via an F-Measure formula (Section 5.1.3.1) and it is a very important
feature of the objective function. Without it the optimizer can minimize scores by
reducing hypothesis surfaces instead of fitting them to observations since smaller
surfaces produce smaller numerical score values. Instead of getting good fits the
optimizer can perform score minimization by just pushing the model further and
further away. So we constrain this behavior by keeping track of “correct” (pixels
that are both part of the hypothesis and the observation) and “existing” pixels
(pixels that have been hypothesized, although not necessarily corresponding to
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the observation) to find an overall best match. This normalization makes scores
directly comparable regardless of the hypothesis distance from the camera. The
final score scaling variable “depthFactor” seen in the following code segment is
what we use to balance the importance of the depth term Ep compared to the
neural network term FE; and corresponds to the wp variable in Equation 5.2.

//We copy our hypothesis (h) results to CPU
thrust :: host_vector<sample> h = m_data—>pixelSums;

//We return results after dividing pixzel distances
//with the populated pizel count..
for (unsigned int i=0; i<h.size (); i++)
{
if (
(h[i].isExisting >0) &&
(h[i].isCorrect >0)
)

a=0.5;//This can be changed to influence precision/recall
oneMinusA=1.0—a;

precisionBalanced = (float) a/h[i].isCorrect;
recallBalanced = (float) oneMinusA / h[i].isExisting;

//Our F—Measure or Np
F = precisionBalanced + recallBalanced;

}

score[i] = (float) (h[i]. differencexdepthFactor«F);

}

The Thrust code given is the heart of the framework and has the strongest im-
pact in performance from all the pipeline. Performance Tables 5.2 and 5.3 provide
a detailed breakdown of computation times across our pipeline. The T'hrust gy,
column corresponds to the time consumed by the CUDA /Thrust code. The care-
fully crafted and massively parallel implementation proposed, does all pixel com-
putations in one step and only uses one reduce operation ensures very fast per-
formance. Computation times for our objective function range from 874us for
calculating scores on a 512x512 pixel batch of 64 particles/hypothesis to 5130us
for a 1600x1200 surface for each PSO generation. The speed-up compared to
a CPU implementation is very big since we achieve more than 10 times faster
performance on computations while also completely circumventing the PCI-Bus
bottlenecks of retrieving the rendered images to the CPU and back and also have
minimal CPU load. The only PCI-Bus usage of our framework is when we first up-
load our geometry during initialization. After initialization for each frame we just
upload our rescaled observation and a small array of joint configurations for each
hypothesis. The GPU renders our configurations, applies the objective function
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and then we just retrieve back the appropriate scores as seen in the above code
segments. The neural network 3D Joint part of the objective just consists of a sum
of the euclidean distances of 2D and 3D points as stated in Section 5.1.3.2 so it
is trivial and skipped for brevity. Figure 5.3 offers a visualization of the different
rendering sizes for comparison.

5.1.3.5 GPU rendering surface optimizations

As one can easily predict and experimentally measure in Tables 5.2 and 5.3 the
polygon count of our 3D model as well as the rendering size selected play a very
important role in achieved framerates. The fact that our optimizer requires at least
64 particles and 20 generations to perform optimizations motivates further thought
about optimizations. Of course higher optimization budget definitely contributes
to better accuracy as seen in the Experiments section 6 and more specifically Figure
6.13. We have to accept that we will need at least 1280 renderings to explore our
36 Dimensional space. The CUDA /Thrust code segment cannot be further simpli-
fied or optimized although a pure CUDA implementation could maybe marginally
further reduce times. 3D rendering speeds can only be improved by simpler ge-
ometry, see Figure 5.2 or a better graphics card. On the other hand a smaller
rendering surface both improves rendering speeds while also reducing the number
of samples that the CUDA/Thrust objective function has to work on. It is thus
a setting that gives us two-fold benefits. However reducing the rendering size also
makes the tracking resolution decrease so once again we reach an impasse.

A final optimization that can be done is to “zoom” and crop the projection

matrix so instead of making an image that fully corresponds to our entire camera
view, we can crop our view and just render to the interesting part of it that contains
our mesh plus a small margin around it. This technique is illustrated in Figure 5.3
where we can see the space saved without significant resolution loss. The discarded
insignificant empty areas of the scene lead to better utilization of our resources for
important parts of the scene instead of summing zeros for 2/3 of our image.

A very detailed book on 3D Graphics that gives information on Projective
geometry is [24]. We will just briefly outline the Projection matrices used in our
framework for completeness in the rest of this section. The camera we want to
emulate with our 3D renderer has focal lengths f,, f, and focal center ¢, ¢y, with
an original VGA viewport (Left,Bottom,Right,Top) where L = 0, B = 0, R = 640,
T = 480. The F and N variables correspond to the Far and Near planes we want
to use depending on the graphics card Z-Buffer precision which is typically 16 or
24 bit, the target scene and the model scale. In our 3D Body Tracking case where
we work on millimeters N = 400 and F' = 10000 are good values. We can thus use
the following Projection matrix P presented in column-major OpenGL compatible
form.
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2% fo/(R— 1) 0 0 0

b 0 2% f,/(T — B) 0 0
C|2%¢/(R—L—-1) 2%¢,/(T-B)—1 —1%x(F+N/F—-N) -1
0 0 —2xFxN/(F—N) 0

Smaller tile sizes are much more lightweight as seen in Tables 5.2 and 5.3.
We can thus rescale the incoming observed array from a 640x480 VGA image to
160x120 QQVGA and just use L = 0, B = 0, R = 160, T" = 120 to match this
smaller observation size. In this case we will only have to process 19200 pixels
instead of 307200 per hypothesis but even this reduction is still wasteful due to
more than half of the image being empty as already stated. In order to crop
and zoom it to yield maximum performance we can adjust our P matrix with the
following P, matrix. Assuming we have a 160x120 QQVGA image but we no longer
want to target the range from 0,0 to 160,120 but instead (30,10) to (130,110) we
first calculate X, Y., W,., H. by substituting our original viewport and zoomed-
viewport measurements. We can thus have L, =0, B, =0, R, = 160, T, = 120
and L, = 30, B, = 10, R, = 100, T, = 110 where with O we have denoted the
original viewport and with Z the zoomed one.

X.=(L.—05%Ry— Lo)/ R,
Y, = —(B.— 05T, — B,)/T,
Wc = Rz/Ro

Hc — TZ/TO

After we calculate these intermediate values we then proceed to calculate the
P, matrix

1/We 0 0 —2x%(X.+W./2)%(1/W,);
b |0 H. 0 <2 (Yo Ho/2) (1/He):
cC 10 0 0 0

0 0 0 0

And with it we can then calculate the final zoomed projection matrix P,. The
resulting 100x100 tile will only contain 10000 pixels almost half of the 19200 pixel
QQVGA tile while also exhibiting higher resolution of our subject. Please note
that matrix order, model scale as well as right vs left hand coordinate systems can
cause problems in computations and one should have a very good understanding
of all these details since in the event of a row-major matrix order for example the
following matrix multiplication will also have to change order.

P,=FP.xP
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59742 faces 11947 faces 5974 faces 1194 faces 597 faces 119 faces
179226 triangles 35841 triangles 17841 triangles 3582 triangles 1791 triangles 357 triangles

Figure 5.2: The level of detail of the meshes rendered in the optimization loop
will dramatically increase optimization times, especially on lower end graphics
cards. By simplifying the mesh through Quadratic Edge Collapse [34],[49] a
method that is readily available on 3D modeling tools like Blender and Mesh-
lab, we can reduce triangle counts and yield significant performance gains. In this
figure we can see gradual simplified versions of our original 119484 faces model
at 50%,10%,5%,1%,0.5% and 0.1% face count. We can see that our model is
over-sampled and over-tessellated especially in the context of our QVGA (320x240)
kinect sensor and our QQVGA(160x120) renderings and comparisons. Even when
discarding 99.5% of the original vertex count and using only 597 faces (0.5%) the
volume occupied by the model is still accurate while much easier to render. How-
ever further reducing the face count to 0.1% of the original model the collapsing
algorithm starts to impact useful features of the model like the head and feet and
devolves to something that barely even resembles a human. A good performance
to quality ratio selection is the 1194 face (1%) model. Further tweaking the model
in the 0.1-0.5% face range could yield highest performance benefits but at serious
expense of tracking accuracy.
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Performance table for a medium-quality (1194 faces/3582 triangles) model

Columns 4-7 depict time measurments in us, Columns 8-9 depict framerates in fps

Tile | Tile PSO Render | Render | Thrust | Neural || Framerate | Framerate
width | height particles gpu/sync | gpu/async gpu cpu serial—neural | parallel—neural
64 64 64 || 2585us 475us 874pus | 1009us 10.12 fps 12.71 fps
64 64 81 || 3272us 796 us 8T2us | 1289us 8.03 fps 10.12 fps
64 64 100 || 4003us 948us 928us | 1580us 6.70 fps 8.50 fps
100 100 64 || 2567us 1016us | 1993us | 1021us 7.58 fps 8.97 fps
100 100 81 || 3238us 1245us | 2407us | 1277us 6.12 fps 7.26 fps
100 100 100 || 4006us 1513us | 2958us | 1578us 4.97 fps 5.90 fps
120 120 64 || 2563us 1271ps | 2713ps | 1028us 6.60 fps 7.64 fps
120 120 81 || 3246us 1571pus | 3306pus | 1262us 5.33 fps 6.16 fps
120 120 100 || 4008us 1932us | 3974pus | 1583us 4.35 fps 5.04 fps
160 120 64 || 2594us 15563us | 3414pus | 1020us 5.83 fps 6.61 fps
160 120 81 || 3280us 1936pus | 4267us | 1264us 4.65 fps 5.27 fps
160 120 100 || 4026us | 2370us | 5130us | 1584us 3.81 fps 4.34 fps

Table 5.2: Average performance measurements of the various code segments of the
optimization framework when using a medium quality polygon model. The first
three columns refer to the optimizer configuration. Bigger tile sizes and particle
numbers ensure better quality at the expense of computing time. Render columns
in the table refer to the rendering times which are split to the setup and uploading
of the articulated model matrices and the actual rendering. The thrust column
refers to the time consumed by CUDA /Thrust to perform scoring. Finally the
Neural column refers to the time it takes to score the neural-network part of the
objective function (Eq:5.4). It can be concurrently calculated on the CPU while
the GPU handles the rendering or happen serially after rendering is done. These
two different pipelining options are shown on the last 2 columns. We observe
that greater particle numbers mean more sphere comparisons while GPU loads
also influence thread scheduling. Neural network computation times also appear
to be slightly impacted on larger tile sizes despite not directly performing more
computations. Each of the PSO generations takes the sum of the times presented
in the last four columns. For each received observation frame we repeat the opti-
mization step depending on the number of PSO generations desired. So rendering
tiles sized 64x64 on a 64 particle 20 generation (1280 renderings) configuration we
will consume 20 * ( 2585 + 475 + 874 + 1009 ) = 98860 microseconds achieving
performance of roughly 10 fps. Running the neural network computations on a
separate thread can further boost the framerate to 12 fps.
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Performance table using the raw scanned model (119486 faces/358458 triangles)

Tile | Tile PSO Render | Render | Thrust | Neural || Framerate | Framerate
width | height particles gpu/sync | gpu/async gpu cpu serial—neural | parallel—nmeural
64 64 64 || 2652us | 16829us 863us | 1064us 2.34 fps 2.46 fps
64 64 81 || 3345us | 21541us 870us | 1320us 1.85 fps 1.94 fps
64 64 100 || 4099us | 26631 us 997us | 1666us 1.50 fps 1.58 fps
100 100 64 || 2647us | 17425us | 1989us | 1053us 2.16 fps 2.27 fps
100 100 81 || 3360us | 22108us | 2476us | 1379us 1.71 fps 1.79 fps
100 100 100 || 4079us | 27157us | 2957us | 1619us 1.40 fps 1.46 fps
120 120 64 || 2636us | 17725us | 2712us | 1076us 2.07 fps 2.17 fps
120 120 81 3343us | 22425us | 3304us | 1348us 1.64 fps 1.72 fps
120 120 100 || 4108us | 27669us | 3999us | 1671us 1.34 fps 1.40 fps
160 120 64 || 2648us | 18061us | 3410us | 1086us 1.98 fps 2.07 fps
160 120 81 3352us | 22820us | 4261us | 1347us 1.57 fps 1.64 fps
160 120 100 || 4071us | 28135us | 5136us | 1604us 1.28 fps 1.34 fps

Table 5.3: Average performance measurements of the various code segments of
the optimization framework when using the raw high polygon model acquired
by scanning. As stated in Figure 5.2, the Neural column can be concurrently
calculated on the CPU while the GPU handles the other three columns. Each of the
PSO generations takes the sum of the times presented in the last four columns. The
neural time can be subtracted if we run it on a separate thread instead of a serial
execution. For each frame we repeat these steps depending on the number of PSO
generations selected so for a 64x64 sized 64 particle 20 generation configuration
we will achieve 20 * ( 2652 + 16829 + 863 + 1064 ) = 428160 microseconds or
roughly 2.3 fps. Running the neural network computations on a separate thread
does not produce a meaningful speed-up as in the case of the optimized medium-
polygon model since the bottleneck in this case is the time to render the geometry.
Of course rendering the raw model on a 64x64 tile is wasteful especially since we
know that our camera sensor cannot output observations of good enough quality.
The way we achieve this quality during model capture with the same sensor is with
extended exposure times for each frame to reduce noise as elaborated in Section 2.
An off-line 3D tracker application interested in a very high level of detail should
also use a larger tile size to harness the high quality renderings as well as a bigger
number of PSO generations to ensure enough optimization budget to converge to
a good solution.
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Figure 5.3: Different rendering sizes of a 64 (8x8) PSO particle configuration
, displayed overlayed for comparison. Input depth observations come encoded in
frames of 640x480 pixels, a resolution which is internally upscaled from the 320x240
depth sensor of the ASUS Xtion/Kinect. However performing comparisons in the
original resolution proves very demanding for contemporary GPUs and thus an
important technique that enable interactive framerates is to subsample and work
with more manageable image dimensions. The largest 1280x960 tile-batch consists
of tiles sized 160x120 pixels each that share the same aspect ratio with the input
depth frame. However we can further reduce sizes by using ”zoomed“ projection
matrices that clip the rendering viewport and that can also alter the aspect ratio by
squeezing it. A 100x100 “zoomed” projection matrix has more resolution than the
160x120 scaled one since almost two thirds of the 160x120 image are empty. This
way and combined to a lower polygon mesh we can drastically improve rendering
times as well as perform fewer CUDA reduction operations and gain significant
speed-ups reaching 9fps framerates when including the neural network times.
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Chapter 6

Experimental Evaluation

The proposed framework consists of high quality modules and this fact immedi-
ately gives the resulting method a positive outlook. However in order to quantify
its precision and overall accuracy we needed to perform a large number of experi-
ments to prove that the method is robust and will work in practice as well as its
architecture suggests.

We thus needed to perform experiments and meticulously log every execution
detail to take care of the following issues :

1. Investigate the importance of scanned model quality for accurate tracking.
This means comparing skinned models with parametric models.

2. Investigate the personalization aspect of models. That means having each
subject be tracked with multiple different skinned models to test how model
variability affects tracking quality.

3. Investigate the robustness of the tracker when we have different movements,
occlusions and movement speeds.

4. Compare tracking quality when using different optimization budgets

In the next sections of this chapter we will start addressing the issues men-
tioned above. We will begin by discussing the source of ground truth to accurately
compare our method results to ideal results, we will continue by explaining the
rationale behind the models selected for the experiments, the experimentation sys-
tem and optimization parameters and the final part of the chapter will conclude
with quantitative and qualitative results.

6.1 Ground truth and the need for a synthetic dataset

The quantitative evaluation of our method requires a dataset containing RGBD
frames of moving humans, together with ground truth regarding their 3D motion
as well as their scanned and skinned 3D model. To the best of our knowledge and
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at the time of writing this thesis, datasets that meet all of the mentioned criteria
were not publicly available.

That beeing said there were many public RGBD datasets that partly fulfilled
our requirements. Most of them featured humans performing actions with ground
truth from a Motion Capture system but all of them lacked the 3D model informa-
tion of the actors. For example, the Berkeley Multi modal Human Action Database
(MHAD) [116] contains RGBD data and ground truth motion information, but no
detailed skinned models of the actors. The CMU datasets [115] contain more chal-
lenging motions than MHAD, but contains no actual RGB information. Finally,
the TNT15 dataset [119] lacks depth information. Moreover, although the lack of
RGB data makes it already problematic as a candidate dataset the 3D models of
subjects are supplied but they are laser-scanned and therefore much more accurate
and noise-free compared to the ones we employ, adding another obstacle to their
use for a fair comparison. Geometric approximation models are the norm in the
literature and they just require one initialization frame to match the height and
thickness of the human body to be tracked. One or more frames of the subject
doing a neutral T-pose were provided for initialization by most public datasets but
these were not enough to achieve the “super resolution” of the model required to
bootstrap the model acquisition methods used by this work [102], [21]. The model
we use [102] is acquired by 8 key poses every one of which requires sampling 200
frames in order for the Kinect Fusion [38] algorithm to refine input and discard
artifacts.

Having no dataset that could readily be used to facilitate our experimentation
we had to resort to constructing our own. We recruited 15 different subjects shown
in Figure 6.1 of all genders, heights and body types in order to acquire a diverse set
of high quality body models using [102]. Having a big pool of subjects to perform
experiments was our first step but there where two further options to choose on
how to proceede.

The first option was to record datasets using a full body motion capture system
that would provide accurate measurements for each joint along with the captured
RGB+D data. The recruited persons would all need to wear a MOCAP suit
and then try to reproduce the same scripted motions in front of a multicamera
calibrated system in an effort to produce a new dataset that could be tracked and
objectively measured. The drawbacks of this dataset generation method would
be that the subjects would not perform exactly the same motions so there would
be deviations in the “difficulty” of the dataset from person to person. A second
drawback would be that although the markers would track very accurately it would
be impossible for them to be placed in the same positions as the joints of the
3D scanned models. Although this could be remedied by triangulating the joint
positions using multiple markers on the same limbs, this fact could still introduce
a slight bias when measuring results. Finally the biggest obstacle was the cost and
general unavailability of a MOCAP system which was the reason of dismissing this
method of dataset generation.
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Figure 6.1: Snapshots of the 15 models captured using [102] posing in the default
t-pose. The parametric model is also included for comparison in the bottom right.
The 4 subjects selected for the experiments are seen in the first row. The selection
was based on maximizing their BMI difference to make experiments more represen-
tative of the importance of body type. Their BMI measurements are the following
from left to right. Male 1 (M;) is 1.78cm tall and 85kg (26.8BMI), Female 1 (F})
is 1.58m and 47kg (18.8BMI), Male 2 (M3) is 1.90cm and 80kg (22.2BMI) and
Female 2 (F3) 1.71m, 67kg (22.9BMI).
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The second option was to generate a synthetic dataset using the scanned sub-
jects model data and a 3D renderer. This way we could programatically render
each one at every desireable pose while also knowing exactly what the tracked pose
should be. This way a variety of motions that where acquired from the motion
capture data of the CMU dataset [115] and the rendered datasets would be repre-
sented and have 1:1 correspondance between all subjects as well as allow unbiased
scoring of the tracker since we would know the true position of the joints for each
of the rendered frames. The only downside would be that any unmodeled behav-
ior of the body would not be reflected by the dataset, but given our options this
proved to be the only way to have high quality ground truth.

Thus, we constructed our own dataset using the synthetic dataset option which
proved to be a very practical method and accomodated the experiments very well.

Having 15 scanned models plus one for a parametric model and 15 ground truth
datasets means that we would have to perform tracking for every combination of
dataset/model for each of the tested configurations bringing them to a total of 240
experiments to cover all combinations per experimental configuration.

From the 15 persons scanned using [102] we thus selected the 4 persons with the
most diverse body mass indicators (BMI), 2 from each gender. This way by cross-
examining 4 very diverse subjects plus the customizable parametric “tin-man”
model P, the computational load was much more manageable (20 experiments per
configuration) and the results more indicative since we had much less pronounced
similiarities between scanned models.

Had we selected all subjects, then running each experimental configuration
would take weeks instead of hours something that would make the study impossible
to be completed in a reasonable timeframe. Moreover since many models share
very similar proportions, heights and weights their cross-examination would reveal
less pronounced errors something that would make the metrics extracted confusing
and not allow clear conclusions on the importance of body models.

The male subjects are noted using (M, M; for the low BMI and M for the high
male BMI ) and the two females using (F, F; for low BMI and F; for high female
BMI). We also employed a primitives-based model (P) whose dimensions can be
adapted to best approximate a given human model. These models are illustrated in
Fig. 6.12 (top). The collected motion capture data from the CMU datasets [115],
included a variety of motions like bending, jumping jacks, simultaneous twisting of
torso and limbs, etc. Finally, we rendered the M and F models in the laboratory
environment of the MHAD [116] datasets. As stated before, the reason why we
did not employ MHAD per se was the unavailability of skinned human models.
Moreover, MHAD contains repetitive motions of lower complexity compared to
that of the employed CMD dataset. As stated in section 2.4.1, dual quaternion
blending [39] was used to realize the skin deformations of the M and F models to
avoid the “candy-wrapping” artifacts produced by standard linear blending. Thus,
we obtained RGBD frames of known human models performing known, complex
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Figure 6.2: The datasets provided in the public archive are the four used in the
comparitive analysis of this work. M1 is Ammar, M2 is Dennis, F'1 is Elina and
F?2 is Aggeliki2
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Figure 6.3: Each of the dataset subfolders hold all of the relevant information to
allow someone to use the stored data to perform his own experiments.

motions in a realistic environment. The final result is two RGBD sequences! of
720 frames each, of the same motions, performed by a male and a female subject.
We refer to these sequences as MS and F'S, respectively.

6.2 Ground truth public dataset

The generated dataset is provided to the public domain in a compressed archive [83].
After downloading the archive which is 844MB long and extracting it each of the
extracted sub-folders will contain the data of a separate subject. The correspon-
dence of the filenames of the subjects to the models of this thesis are seen in
Figure 6.2.

Inside each of the subjects subfolders we will find their highly detailed skinned
models as well as the ground truth image data and text files that hold the correct
configurations of the persons for each of the observed frames.

6.2.1 Color and depth data

Folders color and 2_color hold JPEG image files that are colored renderings of
the skeleton in each of the poses in a frontal and back view. The frontal view
also contains a simulated background taken from the MHAD dataset in order to

!These sequences, together with more that are under development, are publicly available at
http://users.ics.forth.gr/ argyros/research.html#datasets
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Figure 6.4: The datasets folders color (left) and 2_color (right) that hold the two
views of our simulated color renderings of our ground truth.

make the dataset more realistic and challenging. The back view only contains
foreground.

Folders depth and 3_depth hold 16-bit PNG depth image files. They will typ-
ically appear as completely black frames in file managers and most image editors
that expect 8-bit RGB encodings. In order to read them correctly you can use
OpenCV and its imread command (i.e. imread(filename,IMREAD_ANYDEPTH)
) . If you want to directly use the libpng library the following code snippet? might
be useful which is a part of a larger codec toolkit of an RGBDAcquisition tool [84]
that can directly handle accessing these datasets.

When a pair of images from the same view are opened correctly (color/xxxxxx.jpg
corresponds to depth/xxxxxx.png) and (2_color /xxxxxx.jpg to 3_depth/xxxxxx.png)
you should be able to get a snapshot of the experiment. In order to visualize the
frame pairs the code snippets in the RGBDAcquisition repository® [84]. might be
useful although they will require modifications to be decoupled from the RGB-
DAcquisition library. Each of the pixels of the 1 channel 16-bit depth frame is
an unsigned short integer which contains a sensor reading in millimeters for the
specific pixel. Each of the pixels of the 3 channel 8-bit color frame is a Red Green
and Blue value. Please note that in order to properly visualize the depth frame
it needs to be converted to an 8-bit RGB, this can be done using the OpenCV
convertTo calls, and because OpenCV works in a BGR color space instead of RGB
a convertTo call needs to be done for the RGB frame as well.
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Figure 6.5: The datasets folders depth (left) and 3_depth (right) that hold the two
views of our simulated 16-bit depth renderings of our ground truth. File managers
typically expect 8-bit png images so the 16-bit depths may appear black until
processed by a proper PNG reader.
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Figure 6.6: Opening a dataset using the RGBDAcquisition Editor [84]

6.2.2 3D rigged model data

The 3D Models are included in 3 different file formats and are all inside the models
subdirectory of each of the subject folders.

1. For each of the models there is a .dae file that is a Collada rigged mesh that
can be imported using various tools such as Blender, Meshlab, SmartBody
suite or other compatible 3D editor tools. The .dae files are provided as
they were output by the Autorigger and Reshaper tool [21] and require a
resize operation in the armature. You can consult the blender.ogv video file
provided here* that shows how to open a .dae model file using Blender, and
perform this operation as well as to perform a decimate operation to their
geometry. You can also use blender to convert the model to other file formats

’https://github.com/AmmarkoV/RGBDAcquisition/blob/master/tools/Codecs/pnglnput.c
*https://github.com/AmmarkoV/RGBDAcquisition/blob/master/viewer/main.cpp#L232
‘http://cvrlcode.ics.forth.gr/web_share/wacvi8/blender.ogv
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Figure 6.8: Viewing the F'1 model using the Blender 3D Editor in its original .dae
OpenCollada container as outputed by [21].

so the .dae file can be a very useful tool.

2. A second file format provided is the .tri file format which is a simple C/C++
oriented 3D mesh container. You can use this code snippet® and the load-
ModelTri call that can load a filename to a struct TRI_Model® which can
hold all of the geometry in an accessible way from a native C/C++ pro-
gram. In order to animate the skeleton through your program you can use

*https://github.com/AmmarkoV/RGBDAcquisition/blob/master/opengl _acquisition_
shared_library/opengl_depth_and_color_renderer/src/ModellLoader/model_loader_tri.c
Shttps://github.com/AmmarkoV/RGBDAcquisition/blob/master/opengl_acquisition_
shared_library/opengl_depth_and_color_renderer/src/ModelLoader/model_loader_tri.h
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the transformation code provided here” that performs the vertex transforma-
tion operations in CPU although a better implementation should use a GPU
shader based transformation renderer. The OpenGL renderer provided here®
can be easily built using CMake and render using high level .scene scripts
such as this script?. Further details can be found in the project‘s github
page since they are beyond the scope of this thesis. In order to perform
a conversion from the .dae file to the .tri format yourself you can use the
tool provided here'® that can perform the conversion using ./assimpTester
—convert source.dae target.tri

3. A third file format provided is .xml / .bm file pairs that can be opened using
the MBV Tracker suite [68]. They contain both the high quality rigged
model described in the paper as well as a parametric version of it with the
prefix tinBodyXXX.xml This file format is proprietary and property of ICS-
FORTH and governed by this license'!.

6.2.3 DNN 2D joint tracking output

Instead of demanding the dataset user to manually compile the neural network 2D
joint source we have recorded its output and stored it to the dnnOut subdirectory
that contains a 2D estimation for bodies detected for each of the color frames
provided. The body detector used [13] is implemented in Caffe and generates
.json file output using the COCO format. For more information you can see the
declarations in this file 2. Parsing the files can be trivially done using many
different tools but it can also be done using this provided code '3 that with the
parseJsonCOCOSkeleton(const char * filename, struct skeletonCOCO * skel) call
parses the file to a struct SkeletonCOCO that is directly accessible through a
C/C++ program but also has many service functions some of which can also
convert it to CSV (printCOCOSkeletonCSV), generate .scene files that can be
viewed with the RGBDAcquisition renderer(visualize3DSkeletonHuman) or even
generate SVG files (visualize2DSkeletonHuman).

"https://github.com/AmmarkoV/RGBDAcquisition/blob/master/opengl _acquisition_
shared_library/opengl_depth_and_color_renderer/src/ModelLoader/model_loader_
transform_joints.c

Shttps://github.com/AmmarkoV/RGBDAcquisition/tree/master/opengl _acquisition_
shared_library/opengl_depth_and_color_renderer

https://github.com/AmmarkoV/RGBDAcquisition/blob/master/opengl _acquisition_
shared_1ibrary/opengl_depth_and_color_renderer/Scenes/mvaumanNew.conf

Ohttps://github.com/AmmarkoV/RGBDAcquisition/tree/master/opengl_acquisition_
shared_library/opengl_depth_and_color_renderer/submodules/Assimp

"https://github.com/FORTH-ModelBasedTracker/HandTracker/blob/master/license.txt

2https://github.com/CMU-Perceptual-Computing-Lab/caffe_rtpose/blob/master/src/
rtpose/modelDescriptorFactory.cpp

3https://github.com/AmmarkoV/RGBDAcquisition/blob/master/tools/Primitives/
jsonCocoSkeleton.c
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Figure 6.9: Opening a groundtruth .csv file using LibreOffice Calc, notice that
Semicolon is checked as a seperator option

6.2.4 Ground truth data

Finally the most important aspect of the dataset the ground truth data are pro-
vided in a .csv file format in the groundTruth.csv files that are very easy to parse.
They can be directly opened by a very big selection of applications including office
tools Microsoft Excel or LibreOffice Calc are semicolon separated and have labels
for each column that make it easy to understand the assigned values. Timestamps
correspond to frame numbers in color and depth subdirectories.

In order to parse the groundtruth .csv files using a program you can use this
simple Input Parser for C 4 that can be fed strings and tokenize them using the

semicolon as a delimiter. An example client that will parse the csv files can be
found here 1.

6.2.5 Camera intrinsics

The camera intrinsics configurations are stored in the color.calib and depth.calib
(which are identical since the RGB and depth streams are registered). There are
no intrinsic distortions since the groundtruth is rendered, and front views have
no Translation or Rotation vectors but rather have an identity transform matrix.
The information for the back views is stored in calibs/02.calib and calibs/03.calib.
The calibration files are very easy to parse since they try to follow a Matlab

“pttps://github. com/AmmarkoV/InputParser/blob/master/InputParser_C.c
https://github.com/AmmarkoV/RGBDAcquisition/blob/master/tools/Primitives/
CompareBody/groundTruthParser. cpp
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Figure 6.10: Viewing the ground truth data in Libre Office Calc

compatible format. A code snippet that you can find here ¢ provides a call
RefreshCalibration(const char * filename,struct calibration * calib) which can open
a file and populate a struct calibration with the intrinsic values.

All of the files at the time of writing use a fx=575.816, fy=575.816, cx=320,
cy=240 values to mirror our experimental camera, so one could even omit parsing
the .calib files and hardcoding these values. However we plan to add more subjects
to the datasets and it would be best to parse the .calib files in case of future
additions that use different camera settings.

6.3 Optimization parameters

Having got all of the implementation details covered in Chapter 5 and having
provided our ground truth details, before proceeding to the discussion of the ex-
perimental results we must first list and define the optimization parameters that
needed investigation in order to study the behavior of the proposed optimization
framework.

Since PSO (Section 4.1.3) is used as the optimizer that governs regression, its
configuration parameters are also the most important for accurate and fast 3D
tracking. These basic parameters are the number of Generations, Particles
and the possiblity of generated Pertrubations as a mechanism to escape local
minima during the optimization process. As mentioned in Chapter 4, multiplying
Generations times Particles will give us the total number of renderings performed

https://github.com/AmmarkoV/RGBDAcquisition/blob/master/tools/Calibration/
calibration.c#L145
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%Calibration File v 1.0.3 - Matlab Load() compatible Scale Unit: 1.0

%CameralD=0

%CameraNo=0

%Date=

%Imagelidth=640

%ImageHeight=480

%Description=

%Intrinsics I[1,1], I[1,2], I[1,3], I[2,1], 1[2,2], 1[2.3], I[3,1], I[3,2] I[3.3]
%1
575.816

?-GD:STOF‘:LOH D[1], D[2], D[3], D[4] D[5]
%D

%Translation T.X, T.Y, T.Z
%T

%Rotation Vector (Rodrigues) R.X, R.Y, R.Z
%R

Figure 6.11: Contents of .calib file

to regress an input frame, this is the total computational budget afforded for the
specific frame. Since PSO particles can be efficiently computed in parallel using a
GPU implementation the Generations variable roughly controls the optimization
loop time while the Particles number controls GPU utilization. The number of
particles is very important for large parameter spaces, such as the one we work
on, and we need a large population of PSO particles to effectively scan the multi-
dimensional problem. A very big number of particles combined with a very small
number of generations will not be able to perform adequately since the velocities
and positions of particles will not have enough iterations to converge. A very big
number of Generations is also not a good idea since it will have an adverse effect on
achieved optimization framerates and after a specific point more computation time
ceases to benefit output quality. Finally the Pertrubations parameter enables select
parts of the solution vector to be perturbed in order to escape local minima. We
chose not to perturb the first 7 parameters of the solution vector (i.e. the position
and orientation of the human) since the big surface of the body ensures a smooth
track across frames. Instead we chose to perturb only the limbs due to their small
surface and much less pronounced contribution to the overall optimization score.
The fact that limbs do not generally create a big gradient was also combatted by
normalization of the depth volume as seen in Section 5.1.3.1 but pertrubations
where also very useful in that regard. In our experiments we wanted to both strike
a good balance between the number of generations and particles used but also
study the role of pertrubations so all of these variables are a main part of our
investigation.
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A second category of imporant variables to tune where the Depth (Wp) and
Joint (W) objective function weights that where described in Section 5.1.3. Hav-
ing a comparatively big Wp value compared to W would make the body fit better
to the observed depth but in case of tracking drift results would start deteriorating
fast. An inverse configuration with a big W value and small Wp would make the
tracker react well to sudden motions but the overall fit would never be good since
the depth information would be largely ignored. Other than the experiments to
strike a good balance between the Wp and W; what was also very interesting
as an experiment was to perform tracking with one of the two parameters beeing
iteratively eliminated (beeing set to 0). This way we could roughly measure the
role of the two parts of our objective function and their contribution to the final
solution.

A third group of methods that where provisioned and could be switched on
or off by command-line parameters, where heuristics that performed smoothing.
The first and simplest smoothing option was to enable direct smoothing of the
optimization output. This setting in fact slightly hurt average percision but it also
eliminated jitter from the augmented visualization making results more appealing
to the human eye. Although it could be a useful tool in cases where visualization
is very important this idea was in the end not used at all and is included here for
documentation purposes. Another imporant heuristic was the temporal continuity
hypothesis. Having fast tracking rates a reasonable assumption is that subsequent
frames will be close and share a similar solution vector. Thus remembering the
last frame solution means it can be used as a hint that can effectively reduce
the optimization search space. This is a very good idea and was used on at
all experiments. Finally a last heuristic was to inject seed particles based on
predictions. Enabling this meant that the tracker would keep a history of past
states and monitor velocities and accelerations of limbs. When a new frame arrived
and for the first generation a set of guesses would be generated to seed the first
batch of particles. The implementation of this idea had a negligible impact on
tracking percision since after the first generation PSO would replace these initial
guesses and manage to converge with or without the guessed particles, and so it
was not used at all during the experiments. However better statistical analysis
of observed movements in conjunction with a different strategy of optimization
potentially be used to improve tracking accuracy.

Another group of parameters that are important but are used as constants
during the experimentations where the foreground estimation parameters. Having
the previous rendering and the neural network detection we created a bounding
box that covered both 2D areas plus a 1% margin around it. We then sampled
incoming depths and thresholded all incoming depths using a bounding box of 1.2
meters of depth when compared to the previous frame solution. This ensured that
background artifacts as well as the floor would be segmented out of the incoming
depth image and while we would match depth volumes they would not cause any
interference. As stated in Section 5.1.3.1 further thresholding happened using the
T = 30cm final threshold during depth comparisons. All these numbers where
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Female 1 (F1) Male 1 (M1) Female 2 (F2) Male 2 (M2)
1.58m 47kg 188 BMI  1.78m85kg 26.8 BMI l 71m 6?|<g 22.9 BMI 1. 90m 80kg 22. 2 BMI

T iw, 15

Figure 6.12: Snapshots of the four scanned models used in the experiments.
Top row: The Male and Female models that were acquired automatically based

n [102]. Bottom row: sample RGB frames that result from the rendering of the
M and F models in the MHAD [116] dataset background, based on the CMU [115]

mocap data.

experimentally found to work but they have to do with the foreground estimation.
Assuming having only foreground input none of these techniques would need to be
used.

The last group of optimization parameters are the joint weights for 2D es-
timations that have been listed in Table 5.1 and that define joint scoring using
the E; objective function joint term described at Section 5.1.3.2. They are also
used as constants since they just serve to guide the tracker to pay more attention
to the parts of the body that have less surface and are more important. These
joint weights conclude the optimization parameters used and we are now ready to
proceede to the experiments.

6.4 FEvaluation metrics

The proposed method has been evaluated quantitatively on a synthetic data set
(Section 6.1) annotated with ground truth. A first set of experiments investigated
the effect of various parameters and design choices in the accuracy of the proposed
method. In another set of experiments we compared the obtained performance
to that of a baseline method [57]. The experimental evaluation is concluded with
indicative qualitative results in RGBD sequences.

Preliminary qualitative tests of the proposed method with real RGBD camera



6.5. THE EXPERIMENT SYSTEM 75

100 100
95 - 95

b 90 * 90
s S P — 85
W 75 » o
70 L 75

65 - 70

65

-

e =

-
Particles §6\1 T 40
m/ﬁ (ge nerations

Figure 6.13: The error A as a function of the number of particles and generations
in PSO optimization. See text for details.

input, after scanning an actor and then tracking him looked very promising but
a systematic testing approach was needed in order to assess the accuracy of the
proposed method. The main question to be answered was how much would a
skinned human model benefit the quality of a generative body tracker compared
to a generic model consisting of primitives, or a scanned model of a different person.
Other significant questions where how much could a discriminative detector affect
tracking quality, what would be good objective function tuning factors in order to
achieve a balance between depth correspondence and neural network output. A
final question what would be the best depth correspondence with a PSO solution
if we had more information (dual camera) [57].

To quantify the error in body pose estimation, we adopt the metric used in [28]
which involves the Euclidean distances of skeleton joints in the ground truth and
the corresponding points in the estimated body model. The average of all these

distances over all the frames of the sequence constitutes the resulting error estimate
A.

Another metric reports the percentage A(t) of these distances that are within a
distance t from their true location. We will refer to this metric as pose estimation
accuracy. For example, an accuracy of A(80) = 70% for a sequence means that
in all frames of the sequence, 70% of the joints were estimated within 80mm from
the ground truth.
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Figure 6.14: Snapshot of an SVG log file generated to document a specific frame of
a tracking attempt. The svg format proved to be very useful choice for output since
it offered both an easily parseable XML file (left), as well as an immediately visu-
alizeable format with highlighted errors and all relevant information conviniently
placed. SVG files are natively supported by all graphics programs in Linux and
all internet browsers.

6.5 The experiment system

The experiment system consists of a very well organized optimization framework
that can be seen in Figure 5.1. It can be thought as a black box that receives a
skinned 3D Mesh, an RGB+D image pair as well as 2D Joint estimations for the
frame pair. Its output consists of a full 3D pose solution vector as well as a 3D
rendering of the solution and a series of detailed logs that contain every hypothesis
formulated by the algorithm until reaching the solution, along with comparisons to
ground truth. As seen in Section 6.3 this black box also has a lot of configuration
parameters that change it’s optimization strategy and resource consumption .

These configurations are provided to the executable via command-line argu-
ments at the start of each run. Each log-file also contains the configuration setup
that produced it in order for multiple logs to be directly compareable. Every spe-
cific combination of parameters for a specific model/dataset generated over 700MB
of data something that made a full run for all combinations of models/datasets for
a specific parameter coniguration reach 11GB+.

Asseen in Figure 6.14 an SVG file format was used to hold XML based files with
the output of the method. This had the added benefit of beeing also automatically
rendered by graphics programs and also giving a very high-level to check individual
frames.

Bash scripts where used to run and control experiments as well as post process
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Figure 6.15: Right: Snapshot of an experiment script and the parameters passed to
the optimization framework. Left: A sample log directory output for an experiment
. For each optimization frame we get an svg file as described in Figure 6.14 as well
as the derived foreground for the person, an overlay frame with the proposed pose
and finally a color frame where the skeletons are all overlayed on top of the image
to better visualizize what happened .

the log files generated. The log files where processed using the R programming
language to acquire statistics and plotted automatically using gnuplot.

Of course all of the configurable values of the internal implementation of the
tracking framework could not be modeled by the exposed configuration parame-
ters. What complicated things even more was that chages to the optimizer and
fine tuning of its source code, invalidated previous results. Every time the calcu-
lation method changed this meant that new results were no longer compareable
with old ones. It is worth noting that all of the results presented in this thesis
have been acquired using the same final codebase version and changing the spec-
ified configuration parameters for each experiment. One of the challenges of the
experimental phase, especially during the early stages of the project where the
optimization framework was not finalized and good values for the optimization
parameters where not yet known was to find stable configuration values. Thank-
fully the scripting system along with the generated statistics and plots did all the
heavy lifting. After scanning a lot of configuration parameter combinations with
an initial version of the code the configuration parameters could be frozen and
work could be done on improving the optimization engine. Once the optimization
engine worked in a better way a narrower search for good configuration parameters
could be performed. This gradually led to the final optimization configurations
presented in the following sections.
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Figure 6.16: Tracking accuracy A(t) for different weights wp of the depth term
Ep in the objective function.

6.6 Experimental results

6.6.1 Quantitative results

Determining the PSO budget: PSO optimizes its objective function by evolv-
ing p particles in g generations (see Section 4.1.3). The proper selection of p and
g is crucial because it influences the accuracy and the computational requirements
of the method. We set p, g based on the following experiment. We tracked the
M S sequence for all combinations of p € [40,120] with a step of 10 and g € [30, 70]
with a step of 10. For each particles/generations combination, we measured and
averaged the error A (see Section 6.4) in 5 runs. Figure 6.13 shows A as a func-
tion of p and g. It can be verified that a budget of 64 particles and 64 generations
balances the error/computational resources tradeoff. Therefore, in all subsequent
experiments we set p = g = 64.

Tuning the objective function: The objective function of Eq.(5.2) consists
of two terms, one that depends on the registration of the depth values of the
hypothesis and the observation and another that depends on the alignment of the
observed and estimated body joints. The weights wp and w; control the relative
contribution of the two terms. We performed experiments on the M S sequence
to investigate the influence of the weights wp and wy in the objective function of
Eq.(5.2) that control the relative contribution of the depth and the joints terms.
We investigated different values of wp, maintaining wy; = 1. Figure 6.16 shows
A(t) for values wp € {0.5,1.5,3.0,6.0,18.0}. For a very broad range of errors ¢,
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Figure 6.17: The accuracy A(t) of the proposed method for the cases of bal-
anced depth and joints localization terms (red curves), joints-localization-only term
(green curves) and depth-only term (blue curves) for the MS (left) and the F'S
(right) sequences.

wp = 3.0 achieves, overall, the best A(t). Around 10cm, the plots exhibit a switch
point, i.e., lower weights become preferable. This is attributed to the fact that
for larger allowed errors, the significance of the depth term is less pronounced.
With similar experiments, we determined experimentally the values of a = 0.97
(Eq.(5.6)) as well as the values for the weights w; (Egs.(5.4) and (5.5)).
Proposed vs depth-only vs joints-only: In another experiment, we compared
the performance of the proposed method (wp = 3.0, w; = 1.0) with the case
where the joints localization term E; is ignored (w; = 0.0, wp = 1.0) and the
case where the depth term FEp is ignored (w; = 1.0, wp = 0.0). Figure 6.17
illustrates the accuracy A(t) obtained in the three cases for the M S (left) and the
F'S (right) sequences. It can be verified that the depth alone performs the worst.
Optimization only with the OpenPose proposals performs better than optimization
only with depth. However, fusing and balancing the two terms achieves better
performance than any of the terms alone.

Table 6.1 shows the error A in these experiments. It can be verified that A

is significantly lower when the two terms in the objective function are properly
balanced.
Two-phases optimizazation: Having a rather accurate estimation of human
pose, we performed another experiment to check whether, starting from this so-
lution, we can further reduce A by employing a second, refinement phase that
optimizes an objective function that consists only of the depth term. This yielded
a reduction of A of less than 0.5cm. This is in strong support of the objective
function of Eq.(5.2).

The initial formulation for the problem used a 2 step optimization procedure.
The first step used the previous solution as a starting point and utilizing only the
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Sequence, | wp = 1.0, | wp = 0.0, | wp = 3.0,
model wy=00 | wy=10 | wy=1.0
MS, M 140.2 98.9 67.3
FS, F 152.1 98.7 75.6

Table 6.1: Error A (in mm) for experiments isolating different terms of the ob-
jective function. Rows correspond to the sequences M S, FS, each of which is
tracked with the proper model (M, F, respectively). Columns correspond to dif-
ferent weighting schemes (depth only, joints only, balanced). Boldface indicates
best results.

neural network input produced a solution. The second step utilized the neural
network estimation (result of the first step) and with depth input tried to refine
it. For the initialization of the second step optimizer we again tried different
techniques. Most important variants where the one which included PSO particles
with the Neural Network Output while basing all samples around the last solution
and the one that based all particles around the solution of the neural network.
The latter strategy proved better but this still required twice the processing time,
performed worse than the formulation in equation 5.2 since at each step we did
not have all the information available in the swarm. This 2 step formulation
practically made little difference compared to running just using the depth step
so the two steps had to be combined. Having decided to combine the neural and
depth terms in the same objective function, there had to be some weighting to
make them comparable in magnitude and combinable in a single score. Ideally we
would like the neural network term to act like a spring that will cause limbs to
gravitate towards their respective places where depth should dominate locally and
lead them to their true position as described in the Method section of this work.
Other experiments conducted to study the impact of the parameters Wepn,
Wap, W3p and Wj as mentioned in the equations 5.1 to 5.6 was to perform
tracking using the same model, same dataset, same PSO budget and only change
one of the variables at a time to identify their very important role for properly
combining all terms.
Baseline vs perturbed PSO: As described in Section 4.1.3, we employ a vari-
ant of the PSO in which particles are perturbed during the optimization procedure
in order to help them escape local minima. In the experimental setting of Sec-
tion 6.6.1, we investigated the difference in performance of this perturbed version
of PSO relative to the baseline, canonical version [15]. Table 6.2 summarizes the
obtained results for different wps. For all tested values, the perturbed PSO pro-
vides more accurate pose estimates.
The impact of the personalized human model: We performed experiments to
showcase the impact of using a personalized human body model. In that direction,
we measured the pose estimation accuracy A(t) when different models are used for
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’ wp ‘ Baseline PSO (A) ‘ Perturbed PSO (A) ‘

0.5 82.8 77.0
1.5 67.5 70.0
3.0 84.1 67.3
6.0 93.7 73.5
18.0 108.3 81.2

Table 6.2: Error A for the canonical, baseline PSO versus perturbed PSO for
different values of the weighting factor wp.
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Figure 6.18: The accuracy A(t) when a sequence is tracked with the proper model
(red curves), with a scaled model of the opposite sex (green curves) and with a
scaled primitives-based model (blue curves). Results are shown for the MS (left)
and the FS (right) sequences. See text for details.

tracking. We identified three scenarios: (a) tracking with the correct model (i.e.,
M for M S, F for F'S), (b) tracking with the model of the opposite sex (i.e., F for
MS, M for F'S) and (c) tracking with the primitives model (i.e., P for both MS,
F'S). It should be stressed that in cases (b) and (c) the models have been adjusted
to fit the dimensions of the actual person. Thus, differences in performance should
be attributed to the individual human body shape differences and not to their
absolute scale difference. Figure 6.18 illustrates the obtained results. It can be
verified that the best performance is obtained when the personalized model is used
for tracking. Interestingly, the performance of a scaled primitives-based model is
quite similar to the performance of a scaled model of another person. Experiments
using different models as seen in table 6.4 reveal a better behavior that averages
at 2cm for each of the joints when using the 3D scanned models, something which
comes as no surprise since hypothesis are much closer to observations. Something
however that was initially not foreseen is the rival relationship of the neural network
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’ Sequence ‘ Primitives (A) ‘ Male (A) ‘ Female (A) ‘
MS 90.2 67.3 97.1
FS 93.3 92.0 75.6

Table 6.3: The error A when the sequences M .S, 'S are tracked with models M,
F, P. Boldface font indicates best results.

]Sequence\model‘ M, ‘ M, ‘ F, ‘ F, ‘ P ‘

M S, 67.3 | 103.7 | 85.4 | 87.5 | 95.1
M Sy 83.3 | 76.9 | 84.3 | 94.7 | 112.2
FS; 90.2 | 969 | 75.6 | 99.4 | 100.2
F Sy 84.7 | 103.2 | 92.8 | 79.7 | 108.1

Table 6.4: The error A when the sequences M S;, F'S; are tracked with models
M;, F;, P. Boldface font indicates best results.

term to the generative term. Since the two do not necessarily agree we need to
be very careful adjusting Wieps, since low values there and a high reliance on the
neural network detector term makes the model less important. There is a delicate
balance to be struck between the neural and depth term and only when the depth
term is sufficiently large do we take full advantage of our very precise body model.

Table 6.4 shows the error A in these experiments. Using the proper model
results in an error reduction at the level of 2.0 cm.

Table 6.4 shows the error A in these experiments. The minimal values ap-
pearing on the diagonal shows that a sequence is tracked more accurately when
the proper (personalized) model is used. Moreover, the personalized model always
outperforms the on based on primitives (P).

Proposed vs [57]vs [74]: We compare the performance of the proposed method
with that of [57], referred to as “Dual RGBD” because it employs synchronized
input from two, extrinsically calibrated, wide baseline RGBD cameras. This was
possible because of the synthetic nature of the developed datasets that permit the
rendering of a scene from different views. Figure 6.20 summarizes the accuracy A(t)
of the Dual RGBD (continuous curves) and the proposed (dashed curves) methods
for the M S (red) and the F'S (green) sequences. The Dual RGBD method achieves
higher accuracy than the proposed method. It appears that a simple body model
and two wide baseline camera views are preferable to an accurate body model
and a single view. However, the Dual RGBD method requires more complex
hardware setup (two synched cameras), is computationally more intensive and
requires initialization for the first frame. It should also be noted that It should
also This partly happens because of utilizing two different RGBD views instead of
one and because of a larger budget of 65 generations and 200 particles compared
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Figure 6.19: Table 6.4 error A measurments visualized along with the models used.

to the 64 particles 64 generations used in this work. This is useful however as an
approximation of the theoretical best behavior of the pPSO generative component.
The second is the widely deployed OpenNI method [74]. Figure 6.20 summarizes
the accuracy A(t) of the Dual RGBD (red), the OpenNI (blue) and the proposed
(green) methods aggregated over all four sequences. The Dual RGBD method
achieves higher accuracy than the proposed method. It appears that a simple
body model and two wide baseline camera views are preferable to an accurate
body model and a single view. However, the Dual RGBD method requires more
complex hardware setup (two synchronized and extrinsically calibrated cameras),
is computationally more intensive and requires initialization for the first frame.
Figure 6.20 also shows that the proposed method outperforms clearly the OpenNI
method.

6.6.2 Qualitative results

Figures 6.21, 6.22, 6.23, 6.24, 6.25 and 6.26 show indicative qualitative tracking
results. Figures 6.21, 6.22, 6.23, 6.24 show results on the synthetic sequences M S
and F'S and Figures 6.25, 6.26 results on real data. The estimated skinned models
are rendered on the RGB frames. It can be verified that there is a good fit between
the estimated body models and the observed human figures.

6.6.3 Computational performance

The computational performance of the method has been measured in Section
5.1.3.4. All experiments presented here were performed on an Intel i7-4790 16GB
RAM, NVIDIA Geforce GTX 970 GPGPU and executed in a single thread. The
objective function was evaluated in a serial fashion something mandatory to prop-
erly log and store all the intermediate results. The Open Pose 2D body tracker
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Figure 6.20: The accuracy A(t) of the Dual RGBD method [57] (green), the
OpenNI method [74] (blue) and of the proposed one (red) in all four sequences
of the dataset.

runs at 10 fps. The version of the proposed method that does not employ the
depth term requires no human body rendering, so it runs at 1.68 fps in CPU. The
primitives-based model with the full objective function ran at 0.76 fps and the
skinned models (M, F) at a little slower 0.72 fps which is expected because of
the higher complexity of each rendering. However, as stated in Section 5.1.3.4 the
proposed method is very well suited for GPU implementation since all particles
in a PSO generation can be computed in parallel. An optimized implementation
achieve interactive framerates of 6 — 12 fps depending on the quality settings.
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Figure 6.21: Sample qualitative tracking results on the synthetic sequences M S].
Grey skeletons: OpenPose proposals, yellow skeletons: proposed method, green
skeletons: ground truth.

Figure 6.22: Sample qualitative tracking results on the synthetic sequences M Ss.
Grey skeletons: OpenPose proposals, yellow skeletons: proposed method, green
skeletons: ground truth.

Figure 6.23: Sample qualitative tracking results on the synthetic sequences F'S.
Grey skeletons: OpenPose proposals, yellow skeletons: proposed method, green
skeletons: ground truth.
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Figure 6.24: Sample qualitative tracking results on the synthetic sequences F'Ss.
Grey skeletons: OpenPose proposals, yellow skeletons: proposed method, green
skeletons: ground truth.

Figure 6.25: Sample qualitative tracking results on real sequences with M .S sub-
ject. Grey skeletons: OpenPose proposals, yellow skeletons: proposed method.
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Figure 6.26: Sample qualitative tracking results on real sequences with F'S; sub-
ject. Grey skeletons: OpenPose proposals, yellow skeletons: proposed method.
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Chapter 7

Discussion

This chapter concludes the presented human body tracking framework. The result-
ing framework can be considered successful since it met its intended design goals.
Its publication [82] in WACV 2018 makes it one of the first published works to
extend a neural network body detector to a fully personalized 3D human tracker,
and the first in the case of RGB+D cameras. That being said, and as is the case
with most computer vision methodologies, there is still space to further improve it
and there is also great potential for its use as a tool to power a method that will
tackle even harder problems. In this final chapter and after completing the detailed
description of the method and measuring its accuracy experimentally, we will take
a step back to re-examine it and propose a summary of incremental upgrades and
additions in the spirit of further improving it.

7.1 Our contribution

The focus of this work has been to extend convolutional neural network based 2D
human body detectors. With this work the 2D output of a neural network can
be converted to a fully 3D estimation. However generative tracking methods have
been also extended with this work due to the fact that two of their most important
drawbacks, namely initialization and tracking loss/drift have been remedied by the
proposed joint estimation component of the objective function. With the simple
formulation of the objective function we can now recover from tracking loss since
the 2D hints will act as magnets that will recover limbs that might stop registering
to the observed motions. We also no longer have the problem of initialization since
new detections automatically shift the 3D skeleton close to the 2D estimations and
initiate tracking gracefully.

7.2 What can still be improved

We will briefly list possible improvements to the proposed framework which can
be considered as future work for researchers that might wish to further extend the
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method and fill in the gaps unaddressed by the proposed framework.

7.2.1 Live human reconstruction

The first thing that comes to mind that would be an immediate improvement of
this work would be merging the currently discrete step of 3D reconstruction into
3D tracking. Of course the method can currently work by skipping reconstruction
and using a generic 3D model, but this defeats much of its purpose since as seen in
the experimental results (Table 6.4) accuracy suffers from a significant drop when
using a parametric model. However we could tolerate to start tracking using a less
accurate parametric model and after measuring enough depth samples to perform
a fully automatic transition to a reconstructed model. This theoretical single step
method will have all the benefits of the current method and not require the separate
initialization currently performed by [102],[21]. It could prove to be a very useful
strategy that would make the method applicable to a variety of new tracking
scenarios. What is more is that by directly acquiring volume slices that when
augmented with a parametric model can convert it to the observed person we could
quantize and enumerate the observed body and perform 3D human recognition as
well. The implementation could be difficult and have unforeseen complications but
overall live reconstruction will be a substantial improvement.

7.2.2 Body/Clothes/Face and Hair separation

A related topic of future work to the live reconstruction improvements mentioned
in the previous section is to split the now “monolithic” scanned human model to
a split representation where human body, human head and clothes are separate
entities. The SCAPE [1] model along with [21] do a very good job of creating a
composite animation of all these different parts fused together that fits our initial
requirements. However by taking a look on Figure 6.1 what we might notice
is that human body volumes follow strict patterns while hair styles along with
clothes have a much more pronounced effect on the observed appearance of each
subject as well as its volume. Human heads and faces in particular are much more
unique and have an especially important role in our cognitive system that makes
them unfit for generic parametrization. Splitting the human body in the above
mentioned part-models could help simplify the live reconstruction procedure and
make tracking more modular. Hair and cloth physics simulation could also help
with more realistic rendering of the subjects that will in turn maximize accuracy
while tracking.

7.2.3 Multiple person tracking

Despite the neural network 2D joint estimator being able to scale to multiple
persons without effort, this is not the case for our generative body tracker. Adding
a second tracked person in the scene will double the parameter space (from 36 to
72 dimensions). If we treat the dual person tracking problem as a single problem
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and not two smaller ones this will mean working in an exponentially larger search
space, the situation will further deteriorate by adding even more persons. There
has been work on this domain in the similar problem of hand-tracking [72] and
although there is a method of mitigating the dimensionality problems using an
ensemble of collaborative trackers (ECT) [45], the different scale of observed bodies
when compared to hands as well as the nature of their movement and the extent
of occlusions between them could be an interesting case-study.

7.2.4 Person plus objects tracking

3D human tracking is a very interesting problem, but it is ultimately limited in
scope since humans do not exist in a vaccum but instead interact with objects
and their surroundings. One of the strongest aspects of the proposed model based
method is that it can also accommodate 3D object tracking by a simple extension
of the parametric space. This is a big differentiating factor from other methods
since a PSO based optimizer can also reason about occlusions between objects and
persons in a unified way as seen in [45]. Extending the work presented here to a
person+objects tracker would be a very interesting task and will enable a whole
new range of applications. The proposed objective function could be directly used
to incorporate SURF [4],ORB [96] or other sets of features to facilitate object
initialization and tracking in the same hybrid fashion it is performed for human
tracking. Convolutional neural network detectors [87], [88] could also be used as a
detection source that will dynamically instantiate 3D object tracking and make the
method robust to scenes where the viewer is encountered with unexpected objects
and persons.

7.2.5 Person plus hands tracking

The tracker presented utilizes an overall very high quality mesh. However the
level of detail of the hands is limited since they are 3D scanned as a rigid fist.
It is true that the resolution of the sensor we are working with combined with
the distance that we observe the body, means that hands can be abstracted as
fists. However when a person approaches the camera and especially when he has
a transaction with the viewer this will not be the case. For robotic applications
and for a potential scenario where the camera/viewer is an autonomous robot that
needs to manipulate objects presented by a user, hand tracking could be a very
interesting addition to our human tracking problem. It will be straightforward to
add a skinned articulated human hand to the 3D body model used here and the
kinematics chain provided by [21] already provides joints for fingers, albeit not
skinned. Human-Robot interaction scenarios could be an especially compelling
case for an extension of our method with PSO based hand tracking since PSO
hand tracking has been proved to be very accurate, even allowing computers to
infer manipulation forces [78].
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7.2.6 RGB/Stereo Camera support

Another potential improvement for the method is adapting it to a different camera
system than the RGB+D sensor currently used. Although RGB+D sensors are
widely adopted and considered cheap commodity mass marketed devices, they are
still not as ubiquitous as RGB devices like webcameras that exist in all mobile
phones and laptops. Another drawback they exhibit is their sensitivity to sun-
light (due to their infrared projector) which makes them unsuitable for outdoor
environments. A final limitation is their short range and low resolution which can
be a serious limiting factor for the applicability of the method. Using a Stereo
Camera instead of an RGB+D sensor these drawbacks are resolved. Methods like
[76] utilize stereo cameras while maintaining a depth objective function compo-
nent similar to the depth formulation in this work. Using the dual rendering in [76]
we could extend a similar PSO optimizer to stereo cameras. Finally future work
could even attempt to work using just a single camera with a single view/color
only input. Our model fidelity is very high, the single RGB view is suitable as
input for our 2D joint detector and on top of that we could use a color instead of
a depth objective. Sobel edge detection operators and corner detectors could also
be used as tools to mitigate lighting and shadows changes that could negatively
affect tracking.

7.2.7 Performance Improvements

Computational performance is a serious concern for computer vision algorithms.
Generative methods are typically more computationally intensive than discrimina-
tive methods and PSO is considered a demanding optimization scheme. However
in our context PSO turns out to perform favorably since it is significantly sped
up by leveraging GPGPU technology. During the course of this work performance
has been a secondary concern (with the primary concern being accuracy) that has
been mostly addressed by relying on the Mobile Based Vision (MBV) software
framework [68] which is highly optimized for tracking workloads. Until very late
in the project most of the code used single threaded CPU only objective function
calculations which was a big bottleneck but was mandatory in order to log and
study the objective function behavior as presented in the graphs of our experi-
mental evaluation (Chapter 6) However and even after implementing the thrust
optimizer presented in Section 5.1.3.4 I firmly believe that there is still room for
further performance optimizations. Earlier work in potential speed ups [85] of gen-
erative PSO based trackers managed to significantly reduce resource consumption
by focusing optimization budget on parts of the scene that needed it. The same
techniques could be applied for the human tracking problem tackled by this work.
Further optimizations could reduce the datapath of the application by optimizing
computations. Using a renderer based on the Vulcan API that combines rendering
with computations or a shader based renderer /optimizer could provide even better
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performance than the current OpenGL/CUDA implementation. Many such opti-
mizations are technicalities that have little scientific interest but nevertheless they
are important polish that is essential for a production-grade software solution.

7.2.8 Different Optimization Schemes

Particle Swarm Optimization is a robust and proven method that has been suc-
cessfully deployed as an optimization scheme to tackle many problems, as well as
our 36D problem. In the context of this work where we wanted to experiment
on a hybrid combination of heterogeneous data sources it performed very well as
seen from the overall accuracy achieved during experimentation. Its straightfor-
ward formulation and its ability for parallelization of rendering and simultaneous
evaluation was a very desirable feature. The fact that the gradient of our objec-
tive function did not need to be differentiable or follow any other constraints was
also very important. However it would be an interesting future endeavor to test
the formulation we concluded with using other optimization schemes. Hierarchi-
cal PSO, Particle Filters and other methods would be the first candidates for our
task. Altering the proposed objective function to better accommodate different
optimizers that have specific constraints would also be an interesting endeavor to
further explore the topic of hybrid personalized 3D tracking. Decomposition of the
problem by introducing a body hierarchy could also be beneficial since assuming
we can disect it to 4 distinct 9D problems this would yield a much smaller workload
than the originl 36D one due to partial prevention of the combinatorial explosion.

7.3 Applications that can benefit from the framework

The main workload of this thesis focused on proving the proposed method accuracy
and testing it quantitatively and qualitatively. In retrospect this left very little time
for testing it in the context of the various applications that can be powered by it.
Since this method produces tracking output both in the form of 3D limb positions
but it also provides a full solution of limb orientations this means it is ideal for
applications that rely on inverse kinematics. A brief list of potential applications
was offered in the introductory chapter. During the development time we explored
the virtual avatar/gaming case where we could animate a model by tracking a
different person. A similar, although special case of matching an observed body
to a different one is the teleoperation scenario in the context of a humanoid robot.
We can directly use the joint angles returned by the method instead of deriving
an approximate angle configuration through 3D points as shown in Figure 7.1.
We tested the conversion of our tracking results to humanoid robot poses (in the
case of a NAO humanoid) although we never proceeded with live tests due to
many complications such as the physical stability problems of the NAO platform
caused by the inertia of moving arms, or the possible damage to the motors by
rapid motions. We briefly experimented with possible medical applications in the
scenario of physiotherapy/ergo-therapy for people with moving disabilities after
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Figure 7.1: The presented framework is very well suited for applications that
require detailed tracking. Left: Physiotherapists could use the tracking output to
track patient rehabilitation progress after injuries. The parameter space of the
problem can be easily constrained to only track the limbs focused by the doctor to
better facilitate measurements. Right: Humanoid robot teleoperation could also
benefit from the proposed method. The list of angles returned by the tracker can
be directly mapped to robot motors and be used to control humanoid robots.

accidents. The tracker not only can provide direct measurements on the range of
motions executed by the patient, but the developer can also restrict the parameter
space in order to better suit measurements and just contain the limbs a doctor
is interested in increasing both the performance as well as the accuracy of the
specified estimation as seen in 7.1. These use-cases and tests of the tracker where
very limited in scope and time budget and thus did not warrant a special chapter
in this thesis. Instead they are briefly mentioned here for the sake of completeness.

7.4 Epilogue

Having thoroughly documented all of the design process, the fundamental theory
and literature behind the chosen framework modules, the implementation details,
experimental results and thoughts on future research, this method has been fully
recorded in print and will hopefully stand the test of time. This text is a source
of information on our attempts to tackle the human perception problem in a time
where machine learning and neural networks are gaining traction sometimes re-
placing traditional computer vision methodologies. Our hybrid approach could
provide a useful tool as well as insight and inspiration for better ideas to come.
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