
 ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS
               DEPARTMENT OF INFORMATICS

Author :  Ammar Qammaz
Supervisor : Georgios Papaioannou

Athens , April 2012

*



Introduction and motivation                                                                                 03
Goal                                                                                                                        04 
1 Mathematical Framework       

1.1 Camera Pinhole Model 09

1.2 Camera Calibration 11

1.3 Image Rectification 15

2.1 Image Processing 17

2.2 Corner and Feature Detection 21

2.3 Template Matching and Integral Images 24

2.4 HAAR Wavelet based Face Detection 27

3.1 Epipolar Geometry 29

3.2 Binocular Disparity Depth Mapping on a parallel camera setup 31

4.1 Homography Estimation 40

4.2 RANSAC 42

4.3 Optical Flow 44

5.1 Dead Reckoning 47

5.2 Simultaneous localization and mapping 49

5.3 A* Pathfinding 51

6.1 First Order Logic and a Wumpus like World 55

6.2 The big picture 56

2 Hardware 
1.1 Overview 59

1.2 Camera Sensors and Synchronization issues 62

1.3 Motor System and Peripherals 64

2.1 The Energy – Weight - Heat – Cost Problem 66

2.2 GuarddoG Part list / Specifications 69

3 Software Stack
3.1 Overview 70

3.2 Process and Thread Creation Map 75

Library Outline – Video Input 75

Library Outline – Visual Cortex 76

Library Outline – World Mapping 78

Library Outline – Motor Foundation 79

Library Outline – RoboKernel 80

3.3 Unified String Interface 81

4 Future Work 
1.1 Future Work 83

5 Conclusion
Conclusion 85

Photo Album 86

Epilogue 87

Bibliography/References 88



START

Introduction and motivation

A few opening remarks
 

 Humans increased their physical power during the industrial revolution using machines. They were able  
to create giant dams , factories , cars , airplanes and skyscrapers to make their everyday life easier . Technology  
has continued to improve exponentially and in the current age , labeled by some as the age of informatics or the  
internet ,  mental capabilities where multiplied. Merging the following two revolutions we can finally partly  
replace ourselves from dull and repetitive tasks of day to day life that will gradually stop to trouble  mankind 
leading to a more pleasant life.  The GuarddoG project is about making machines that can see and act as a  
futuristic private guard .

The process of creating an autonomous robot that can perceive its environment and react and interact  
with it took nature millions of years. From the first bacteria to multi cell organisms , the wolf then the dog and  
the  human ,  enormous  evolutionary  differences  created  beings  of  immense  complexity  and perfection.  For  
someone to study , understand and then build something that took such a great amount of time in even a quarter  
of  a  lifetime is  over-ambitious.  An  observation  that  is  thought  provoking is  that  while  humans  have  been  
surpassed by computers in complex decision making procedures such as chess playing or tactic games with a  
limited  set  of  rules  ,  in  contrast  humans  have  an  extraordinary  innate  superiority  on  simple  tasks  such  as 
perceiving space ,  time  ,  and  “natural  logic”  a  result  of  the  millions  years  of  natural  selection  with these  
characteristics as a basis.

That being said GuarddoG does not attempt to create a dog ( with everything a dog implies ) , because 
this is practically impossible. Its goal is replacing a specific function of a dog as a guardian. I am very optimistic 
that with time robots will eventually be improved enough to be able to perform a multitude of tasks approaching  
something that will surely be different than a real dog , better at some things , and worse at some others.
 

Even though the future will offer even more tools  , even now thanks to the marvelous technology and 
work of all the scientists , mathematicians , physicists , chemists , engineers and computer scientists ( we are 
literally standing on the shoulders of giants )   I was able to construct something very close to my original target ,  
spending a fraction of the money and time that would be required before 15 or even 10 years.

           A better way for someone to visualize the small subset of functionality that is attempted by computer  
vision algorithms and in this case GuarddoG , is to compare it to the holy grail of cognition and intelligence , the  
human brain. Though computers for many years have managed to surpass human experts on tasks like playing  
chess , remembering  sequences of numbers , performing arithmetic calculations on large data sets and recently  
even guessing questions to answers ( IBM Watson on the Jeopardy TV Show ) , things that everyone can do 
without even thinking about , like walking , identifying 3D objects and faces , and coordinating his head , eye 
and body movement are currently unachievable by machines at least to the extent of human performance . 

          This is a good indicator of the level of optimization that has taken place through the millions of years of  
evolution , because there is no doubt that if playing chess was a trait that leaded to natural selection the human  
brain would be totally different and have a much greater affinity towards these kind of activities. On the other  
hand , if breathing , beating the heart or walking and identifying objects wasn't crucial for the survival of the  
human species , to master these kind of activities could may well be as difficult and time consuming to be  
achieved as mastering chess .*



Project Goal 

The goal of the “Guard Dog” Project 

The goal of the Guard Dog Project is to build a robotics platform that can act as a guard , traverse a 
known path and fend off intruders. In case of a security breach it would signal the alarm and begin to follow the 
perpetrator and after a set distance would resume its previous path.
 

The goal of this document is to give a clear and concise look of the algorithms , methods and building 
blocks that should be employed to achieve this. Needless to say it was a very challenging effort discovering  
these first hand during development , and compiling them in this document in a coherent form of  reasonable 
proportions is also proving to be very difficult. For many of the things that are mentioned in a paragraph or a 
page , one could go on writing hundreds of pages or even books to fully justify and explain them , and indeed 
hundreds and thousands of pages have been written for them. Wherever needed , the provided references will  
help the reader better understand the concepts or study them in more detail. In addition to these references the  
first bibliography entries are related books that can be of great aid to the reader.  

Robotics and computer vision are not a new domain of computer science and electrical engineering. It  
was especially shocking for me to see video footage of experiments in the AI Lab of Stanford  ( for example Les  
earnest and Lou paul and the Rancho Arm ) circa 1971 that perform object detection , complex decision making 
and that actually use more or less the same algorithms as current robotics projects do. The major difference is not  
so much about the methods used , but the exponential improvement on computer hardware , popularly coined as 
Moore`s Law.

We are living in times where many high-end mobile phones actually have more complex processors than 
the satellites of the first mission to the moon and that experiments such as those that required equipment that cost 
millions  of  dollars  in  1971 and could  only be  done  in  universities  or  government  research centers  can  be 
reproduced with consumer electronics readily available everywhere. Unfortunately the consistent computation of 
the world around a robot is still a very difficult  and expensive task with a generic CPU and no specialized 
hardware , but yet it seems almost feasible when you achieve even something that can work 10 times slower than  
a human. 

Of course an additional goal of the project is to perform guard duties using only cheap building blocks  
but not passive sensors as most commercially available security systems do. Instead building a semi-intelligent 
agent that can do this job the way humans would do it. It is an exploration of the possibilities and limits of  
current technologies along with software that can leverage the capabilities of computer hardware in an efficient  
way, to achieve it. 

It is also interesting to note that the same computer vision libraries , could in principle and with some 
necessary adjustments be fitted for tasks like driving cars in city streets ,  helping blind people find their way or  
any  task that  involves  using optical  information of  ones  surroundings to  achieve  a  related goal.  The main 
difference would be the risk/cost and risk/performance ratio since a computer driving a car at full speed can be a  
much worse hazard when compared to a small robot bumping on a wall.

*



Overview

 An outline of this text to help the reader 

The ease with which humans sense the world makes the problem of computer vision seem “easy” to 
solve. In fact the way we see is so natural and persistent that even scientists in the field made biased over-
optimistic predictions about it.  The fact is that despite the exponential growth in computational speed , and 
although there is a very big market that could certainly use vision algorithms to automate tasks , there is still no 
defacto  algorithm  that  can  compare  to  what  human  vision  performs.  Moreover  from  simple  reflexes  as  
maintaining focus and coordinating ones gaze , reading text , to tracking your position in an unknown city ,  
vision seems to be “AI-Complete” , since understanding and combining what is seen is an altogether different  
task than the small building blocks which are presented here.     
 A robot that can see and interact with the world , is basically a Turing machine on wheels. Therefore the  
whole model presented here is an adaptation of different mathematical concepts and a fusion of them together.  
The strip of tape in this Turing machine is constantly filled with symbols of light intensity as the light gets 
reflected and activates the camera sensor elements. When the control algorithm decides that the robot has to  
move it writes it to the according tape elements and the motors move , producing a new view of the world.

 
 The vision algorithms act like a “reverse-graphics card” since they are employed to generate a three dimensional  
array of vectors and points using their projection on a 2D plane as input. 3D graphics card operate to the exact  
opposite end since they are used to render 3D data on a 2D surcace ( i.e. computer monitor ) . 

*



The first thing to take into consideration beginning to approach this problem , is how the physical world 
is being represented by the cameras. They are , after all , the means with which the GuarddoG/RoboVision  
algorithm collection , a “meta”physical entity can take a peek into reality. The data acquired must be filtered to  
remove  deformations  and distortions  that  may corrupt  the  whole  process.  These steps  are  described  in  the  
Camera Model , Camera Calibration and Image Rectification parts of this document. Once two corresponding  
images of the projection of the world on the camera sensors are acquired , they are examined for optical cues that  
reveal  the  details  of  the  world  in  three  dimensions  and  also  the  robot's  position.  This  is  also  discussed  
extensively , and the Disparity Mapping algorithm used by GuarddoG is a noteworthy and novel implementation 
on traditional disparity mapping using integral images to substantially speed up the process. When all these steps 
are finished , the next one is tracking the position of the robot ( LK Optical Flow , RANSAC Homography ) and 
the combination of the successive 3d Views together ( SLAM , Obstacle Detection ).

The final piece of the algorithm is a knowledge base that sets its goals and keep the state of the world , steering  
the robot towards achieving them. For  GuarddoG , its goal is the traversal of a standard path , and raising the 
alarm if a breach is found. 

Beginning to make a system that sees , one can make many choices about the way with which to gather 
input. As nature teaches us , and by bringing to mind various insects and animals that have been optimized 
through a process of millions of years to see one might use anything from ultrasonic sounds , to the million small  
eyes of insects up to human stereoscopy. With the world represented through the camera being so chaotic , and 
as this project does not deal with a fixed environment in which to be operated , while also having economic 
restrictions applied , the best choice was a human like stereoscopic camera input. It is true that commercial  
RGB+depth cameras such as Microsoft Kinect can bypass a very big portion of the computational complexity of  
this project , but they still have their own drawbacks. The stereoscopic setup wasn't chosen by accident by nature 
, and the nature of a robot that uses stereoscopic vision makes it closer to the human experience as a mode of  
viewing the world. 

*

Illustration 1: The chicken and egg problem nature of an autonomous robot , 
that with its action changes its perception of the world , and with the changing 
perception of the world it changes its action..!



Trying to approach the upper bound computational limit of a dense stereoscopic method for two frames 
sized 320x240 pixels , in order for a full search from an image patch sized 40x40 pixels on the left eye to all the  
possible matching patches along the epipolar line on the right eye , we have to make 320 x 320 x 240 / 40 =  
24576000 /40 = 614400 operations in the worst case each time we get a depth map.  In order to achieve a 
“human like” response time from the vision system this has to be done at a rate of 25 frames per second , or a  
maximum delay of 40 milliseconds per scan..
The number of operations per second increases exponentially as the image size becomes larger

 SIZE IMAGE RESOLUTION OPERATIONS OPERATIONS PER ms

QVGA 320 x 320 x 240 / 40 24,576,000 614,400 operations / ms

VGA 640 x 640 x 480 / 40 196,608,000 4,915,200 operations / ms

XGA 1024 x 1024 x 768 / 40 805,306,368 20,132,659 operations / ms 

... Other Configurations ... ...

WUXGA 1920 x 1920 x 1024 / 40 3,774,873,600 94,371,840 operations / ms 

This exponential increase , of course , impacts all the algorithms used on the project , and for every  
operation there are numerous sub operations implied so the total maximum number of operations ends up being  
many times larger than the numbers on this table. All the algorithms on the other hand do a much better job than  
this worst case scenario , and specifically the disparity mapping algorithm of GuarddoG , which is one of  its  
novel aspects and is briefly presented in this text . To reduce the number of operations by design , and as an early  
measure to compensate for the cheap hardware that is used by the on-board computer the resolution of images  
used by default is QVGA ( 320x240 pixels ) .

*

Illustration 2: What computers see

Illustration 3: CCD sensor



Manufacturing a physical stereo rig for the experiments which is perfectly aligned has a crucial effect on 
the  calculations.   Not  only  it  increases  computational  efficiency  and  reduces  errors  but  it  also  removes  
mathematical ambiguity about instances of the world that can be interpreted in many ways.. The relative position  
of the GuarddoG cameras is supposed to be constant and the two cameras always have a coplanar alignment with  
a fixed distance between the optical centers.  The cameras are also never allowed to change their focus ( nor  
could change it as they do not have an automatic focus control ).  

To avoid re calculations and use of the CPU for reasons avoidable by better designed algorithms or a  
smarter implementation , the whole vision library uses a pipelined architecture , so that the same image will not  
have to pass a processing stage twice once it enters and according to the needs of the Robot Hypervisor the 
different stages try to be combined , or operations stay pending for the next frame. 

The pipeline itself ,  a term that is frequently mentioned in this document , is an abstract term meaning 
the whole library collection and the final  program which when executed receives input  from the cameras ,  
channels it and processes it and then using the motor system steers the whole platform to achieve the set goal . 

The purpose of this document is to describe and analyze this pipeline and it is organized in five parts ,  
each of which is dedicated to a certain aspect of  it. The first stage is to analyze the mathematical background of  
the algorithms , why they were chosen and why they should in theory work discussing performance issues from 
a complexity viewpoint . 

The  second  part  focuses  on  hardware  and  technical  details  ,  along  with  performance  statistics  for  
different hardware setups. The third one explains the various tactics followed writing the software and how 
everything fits together on the resulting software stack. Part four discusses about the system in practice , its  
performance and limitations on actual deployment , and the fifth and the last chapter for future plans for an even  
better implementation and self-reflection about the project.

 

*

Illustration 4: The fixed parallel camera rig , that 
GuarddoG uses 



Mathematical Framework

 1.1  Camera Pinhole Model 

A pinhole camera is a light capturing device without lens and a very small aperture. Regardless of the 
imaging sensor , the shutter system , or the integrated circuit on camera , it is fundamental to understand the 
physical model and how light gets projected on the sensor , in order to start to reverse engineer the physical 
process that creates the data we must later process.  

The smaller the hole of the camera aperture , the less light rays pass through it and the sharper the image 
gets , but as the hole size decreases , so does the total number of photons that pass through it, resulting in a  
dimmed image for short exposures. Regardless of the number of picture elements or the mechanism that captures 
the light the most fundamental laws that govern vision are mathematics and in our case Euclidean geometry.

             Of course besides mathematics , optics and physics explain other implied principles such as why light  
propagates in a straight line the way it does , why objects radiate a specific electromagnetic spectrum frequency  
and other interesting details that govern the procedure. Since a domestic robot will not encounter gravitational  
lens , refractions due to heat or liquids these are details that can safely be omitted .

 However a light bending phenomenon , although far less exotic than the previous stated ,does indeed 
impact the procedure. Due to manufacturing inefficiencies in the shape and substance of the camera lens , the  
projection  on  the  camera  sensor  gets  distorted.  The  distortion  ,  depending  on  the  quality  of  the  methods 
employed by the factory that makes the camera can be so great that the generated image may become unusable 
without  additional  processing.  This  problem  is  discussed  in  the  calibration  and  re  sectioning  part  of  this 
document ( the next topic ) , that aims to measure and repair the distorted image making it fit to  the ideal  
pinhole camera model described here.

The pinhole camera model applies to most consumer grade web cameras and it is a very useful tool both  
for this  usage scenario as well  as for understanding more complex camera topics such as zoom lens focus  
changing and many others 

*



The point O is where the camera aperture is located , and the start of the axes. The three axes of the 
coordinate system are referred to as X1, X2 and X3. Axis X3 points in the viewing direction of the camera and is  
referred to as the optical axis, principal axis, or principal ray. The 3D plane which intersects with axes X1 and  
X2 is the front side of the camera, or principal plane. 

The reflected rays from the world end up on the image plane , a two dimensional plane which is parallel  
to axes X1 and X2 and is located at distance f from the origin O in the negative direction of the X3 axis. A  
practical implementation of a pinhole camera implies that the image plane is located such that it intersects the 
X3 axis at coordinate -f where f > 0. f is also referred to as the focal length of the pinhole camera.

 

A point R at the intersection of the optical axis and the image plane  is referred to as the principal point  
or image center. A point P somewhere in the world at coordinate (x1,x2,x3) relative to the axes X1,X2,X3 is the 
projection line of point P into the camera. This is the green line which passes through point P and the point O. 
The projection of  point  P onto the image plane,  denoted Q.  This  point  is  given by the intersection of  the 
projection line (green) and the image plane. In any practical situation we can assume that x3 > 0 which means 
that the intersection point is well defined. 

There is also a 2D coordinate system in the image plane, with origin at R and with axes Y1 and Y2 which are  
parallel to X1 and X2, respectively. The coordinates of point Q relative to this coordinate system is (y1,y2). 

*

Illustration 5: The pinhole camera model , illustration from Wikipedia , public domain 



The geometry of the pinhole camera viewed from the side , and on two dimensions. The calculations 
performed are based on similar triangles that are created with the point O as their intersection.

 

  The mathematical equations that condense are the following :

−y1

f
=

x1

x3

∨ y1=− f
x1

x3

−y2

f
=

x2

x3

∨ y2=− f
x2

x3

( y1 y 2 )=
− f
x3

( x1 x2 )

These equations may seem elementary , and this is only logical since they have been a part of the human 
knowledge domain around for at least 2500 years  ( they can be directly derived from the Pythagorean theorem 
circa 500BC ) but they are the first fundamental “laws” that govern the scene geometry when the 3D space is 
dissected to 2D planes.

*

Illustration 6: The pinhole camera model , viewed from the side ( from the X2 
axis )  , illustration from Wikipedia ,  public domain 



Mathematical Framework

 1.2  Camera Calibration 

  
Having explained the underlying geometry behind the ideal pinhole camera model we need to adapt it to  

real cameras and their physical limits. In mathematics, it is possible to define a lens set that will introduce no 
distortions in the image captured. In practice, however, and due to manufacturing process inefficiencies  two  
types of distortion occur . Radial distortion , caused by the shape of lens not being parabolic , and tangential  
distortion due to the assembly process of the camera in the factory.

Radial distortion causes a characteristic bending of straight lines as they get closer to the edges of the  
image  and  on  systems  that  are  heavily  based  on  those  images  it  can  have  a  very  detrimental  effect  on 
calculations that gets worse as the errors gradually accumulate in time. While disparity mapping algorithms can 
partly withstand this kind of distortion due to using a relatively large neighborhood of pixels that overall remains 
the same ,  point  tracking and optical  flow algorithms that  estimate  and track the camera position are very 
vulnerable to this kind of distortion. The reason this happens is because the relative positions of pixels change as 
they move to the edges and give wrong constraints for the system of equations to be solved later on.

These optical defects have been very notable during the analogue period of photography , when the 
photographs could not  be dynamically altered to correct this  distortion.  Modern commercial camera makers  
often use low quality lens and mitigate the problem on the on-board image processing chip that reduces the 
problem. Trying to take into account the automatic approximate rectification inside the black box of the camera 
chipset makes the final “external absolute” rectification process even more difficult. Luckily due to the low cost  
of  computer webcameras the image captured by them is unaltered so we can study the distortion and then 
remove it. 

Barrel distortion Pincushion distortion



Tangential Distortion on the other hand is a matter of misplacing the imaging sensor relatively  to the lens ( not a 
fully parallel placement ) and therefore receiving a slightly skewed image.

 Figuring out the way with witch a camera distorts the projection of the world on to its image sensor is  
called camera calibration. There are numerous methods and considerations to be taken into account to achieve 
calibration , even methods that gradually “auto calibrate” the raw input images without special patterns and 
objects or prior training of the algorithm.  [42] . 

The OpenCV implementation receives the corners between the chessboard blocks  as inputs , which are  
extracted  using  a  corner  detector.   First,  it  computes  the  initial  intrinsic  parameters  and  sets  the  distortion  
coefficients  to  zero.  Afterwards  using  the  Levenberg-Marquardt  optimization  algorithm  [39][40][41]  the  
reprojection error is  minimized until a stable parameter set is found. The method was conceived by Zhang [5]  

Illustration 7: OpenCV Chessboard 10x7 
calibration pattern Illustration 8: Typical Detection Image 

Generated by OpenCV 



and Sturm [43]  and a thing that is worth to be mentioned is that the cameras used by GuarddoG are graded by 
the manufacturer to have a less than 5% distortion and the algorithms work sufficiently well even when input is 
uncalibrated.

*

Illustration 9: Raw images received from the cameras and their calibrated equivalent ( the distortion 
parameters are exaggerated to better show the way calibration alters the input images )



Mathematical Framework

 1.3  Image Rectification 

 
Each camera has intrinsic and extrinsic parameters. Intrinsic parameters model the camera as a device  

and they are constituted by the skew coefficient ( γ ) that is usually zero  , the principle point or image center  
( Cx , Cy ) and Fx , Fy which is the focal point multiplied by a number that scales from pixels to distance ( and is  
defined by the size of a pixel in the image sensor ) .

Extrinsic parameters give information about the position of the camera in the world , and  are basically a  
translation and a rotation matrix , usually combined in a 3x4 matrix.

The extended equations from the pinhole model for a perfect undistorted lens with with intrinsic and 
extrinsic parameters are modeled by the following equations
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x' and y' are used as an intermediate step to better show the 

added computations when performing resectioning in the page that follows

 



Radial and tangential distortion correction gets included to the model using  k1 , k2 , k3  coefficients for radial  
distortion and p1 , p2 for tangential. They basically work by warping the image with a center of cx,cy and the 
higher the distance from the center the more it is pushed away to compensate for the increasing distortion. 
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Executing these calculations gives us the rectified position of a point captured by the camera. 
  

Since re sectioning the image must be done for every frame received from the usb cameras ( which serve 
images @ 120 Hz ) and since most camera chips don't offer a hardware interface for passing the distorition  
parameters to the local integrated circuit so it can perform this kind of image processing with out involving the 
main processor , a fast technique must be applied to avoid calculating all these displacements on every new  
frame.

Since the camera doesn't change its focus settings ,  the distortion parameters are always the same.  We  
can use this knowledge to our advantage generating a precalculation frame that has pointers to the calibrated  
positions as its elements after acquiring the distortion parameters. 
That way , the expensive task of computing the formulas mentioned above happens only once ( on program 
startup ) and the least possible overhead is added to the pipeline process ( around 500 microseconds per frame on 
the main development computer , hardware details are on the second part of this text  ). This tactic is followed 
both by the OpenCV implementation , as well as the GuarddoG RoboVision stack.  

*



Mathematical Framework

 2.1  Image Processing 

Digital cameras are devices that capture the light that the universe reflects on their sensor. The general  
problem most vision algorithms try to solve is guessing what kind of a world reflects the light in that way. The  
algorithms  presented  here  are  building  blocks  that  gradually  transform  the  raw  RGB  input  into  more 
computationally meaningful representations . 

Convolution is a mathematical operation applied to sets of values that “redistributes” them according to 
coefficients from a second set of values. The result is a new combined set that has similarities with both previous  
sets. Convolution is originally defined in mathematical functional analysis and takes a slightly different form in  
image processing where it is typically performed on a 2D array of brightness values.   The carrier of the weights  
is called a convolution matrix and its elements act as coefficients changing the neighboring elements of each 
pixel. The larger the convolution matrix size , the smoother the redistribution , but due to the computational cost  
the most common sizes for kernels are 3x3 or 5x5 with usually the middle pixel used as a point of reference or  
an anchor point.  

The values transformed by the convolution matrix are the red , green and blue light intensities of the  
pixels retrieved from the image sensor.  In the following example we assume a 3x3 kernel and a monochrome 
image sensor that captured 9x6 pixels. The kernel is passed left to right and up to down until all of the elements  
are changed. GuarddoG uses  Blur , First and Second Derivative Convolution kernels that follow with example 
images.

    1        1        1    

    1        1       1    

    1        1        1    
                  3X3 Convolution Kernel

     Divisor 9

As the anchor of the kernel passes from each element 
of the image array the value ( marked blue ) gets 
replaced by the addition of the neighboring elements 
multiplied with the corresponding kernel coefficients.

H (x , y )=∑
i=0

Mi−1

∑
j=0

Mj−1

I (x+ i−a i , y+ j−a j)G(i , j)

The anchor element  on the light intensities array will 
become 
( 1x90+1x80 +1x70+1x90+1*80+1*70+
1x90 + 1x80 + 1x70  ) / 9  which is 80 

 9 x 6  Original Light Intensities Captured

90 80 70 90 80 70 90 80 70

90 80 70 90 80 70 90 80 70

90 80 70 90 80 70 90 80 70

90 80 70 90 80 70 90 80 70

90 80 70 90 80 70 90 80 70

90 80 70 90 80 70 90 80 70

 An important thing to be noted is that values on the 
edges of the array ( marked orange )  can not be 
correctly calculated as not all neighboring elements 
exist , common solutions for this is zero padding ,  
using a different divisor to compensate for the missing 
elements or skipping the elements that can not be 
calculated correctly .



 

BLUR FILTER
(Gaussian Approximation)

1 2 1

2 4 2

1 2 1
Divisor 16    

FIRST-ORDER DERIVATIVE 
(Horizontal Sobel )

1 2 1

0 0 0

-1 -2 -1
Divisor 1     

FIRST-ORDER DERIVATIVE 
(Vertical Sobel )

-1 0 1

-2 0 2

-1 0 1
Divisor 1     

SECOND-ORDER DERIVATIVE

-1 0 1

0 0 0

1 0 -1
Divisor 3       

As someone can easily observe by thinking a little about  the convolution process ,  it  is a waste of  
resources to perform multiplications with the null elements of a convolution matrix, and as an example for the  
second-order derivative that has 5 null elements  a little more than half the original number of multiplications  
can be skipped. An additional optimization that can be performed is combining two convolution matrices in to 
one to reduce memory access related latencies from two subsequent passes on the image.



                 Horizontal
1 2 1

0 0 0

-1 -2 -1
         Divisor 1     

                     Vertical
-1 0 1

-2 0 2

-1 0 1
            Divisor 1     

              Combined on
p1 p2 p3

p4 p5 p6

p7 p8 p9
            

The values p1 … p9 are the pixel values on the image array in which the convolution takes place..
In order to completely avoid multiplications ( at least on the matrix part ) we add and subtract the values and so  
for the pixel 2 ( p2 ) since the coefficient is 2 we do p2 + p2 . 

 horizontal_sum = p1 + p2 + p2 + p3 - p7 - p8 - p8 - p9 
 vertical_sum = p1  + p4 + p4 + p7 - p3 - p6 - p6 - p9 

final_sum = square_root( ( horizontal_sum * horizontal_sum ) +  (vertical_sum*vertical_sum) )

The final speed up is replacing the square root operation with a log base 2 approximation using shift operations 
based on the IEEE 754 floating point arithmetic standards and the algorithm described below.

inline float square_root (const float x)  
{
  union
  {
    int i;
    float x;
  } u;
  u.x = x;
  u.i = (1<<29) + (u.i >> 1) - (1<<22); 
  return u.x;
}

Of course using an SIMD ( Single instruction, multiple data ) instruction set capable CPU with properly 
aligned data and loop unrolling can speed up the operations even more but even without these steps , the code  
form on this level is simple enough for gcc to do a good job optimizing it automatically.
 

Blur filters even out the colors on an input image using the median color value of the surrounding area . 
Blurring is a common operation by vision software mainly used due to the fact that image sensors retrieve pixels  
that suffer from noise , these noise spikes are reduced therefore leading to more stable edge and corner detection.

The First-order derivative operator acts as a differentiation operator , resulting in an output that only  
responds to “change” of colors and ignores similar colored areas. Thus it is very useful as it reduces the image to  
its more unique parts , its edges .

The second-order derivative operator also acts as a differentiation operator , resulting in an output that  
only responds to “change” of “change” of colors ( second order ) and  ignores similar colored areas while also 
having a better reaction to sudden spikes on the color frequency. Its output also reveals the image edges but is  
much more stable than the first-order operator. 



Palette reduction reduces the total number of possible tones that one pixel can take from 16581375 on an  
24bit color depth ( 255 * 255 * 255 ) to an other given number. Reducing the total possible colors causes  
similarly colored pixels to fall into the same color bin. This can be leveraged to make the datasets more resistant  
to noise. Conversion from a full color palette to a monochrome image , is a very common operation on computer 
vision algorithms. 

Thresholding can be used as a filter extension to apply a high ( or low ) pass bound on an incoming 
signal and discard pixels that do not match the criteria. This is generally done after edge detection operations to  
reduce false output caused by noise. 

The RGB Movement  operation is a direct absolute subtraction of each of the pixels ( on each of the  
color channels ). This is passed through a low threshold and results on an output image with a large value where  
there is a large color difference (movement) and 0 value when the pixel remains unaltered This “delta” version of 
two images is useful in many occasions. First in determining if the stream of images is static , ( so we can skip  
redundant calculations and improve the performance and power consumption of the CPU ) , it is important when 
the robot is not moving and views a supposedly still environment as a really fast alarm function and it helps with  
disparity mapping , since unoc

Histograms are produced by counting the total instances of the different colors on an area of an input.  
They can provide a good general idea about an image , such as its brightness, color distribution and are used in 
guarddog as a fast discarding mechanism for regions of the image when performing disparity mapping .

The miscellaneous image processing operations used by GuarddoG are mentioned in the table that follows

NAME OPERATIONS DESCRIPTION

Gaussian Blur 9 * Height*Width Blurring input image to reduce noise

Sobel edge det. 2 * 9 * Height*Width Edge Detection

Second-order de. 4 * Height*Width Edge Detection

Palette Reduce Height*Width Group color frequencies together to reduce them  

Threshold Image Height*Width Discard information that may be subject to noise

RGB Movement 3*Height*Width Subtract row RGB values from two consecutive images 

Histogram Height*Width Calculate number of pixels that have the same color

*



Mathematical Framework

 2.2  Corner and Feature Detection 

 
 

After performing the various image processing steps mentioned above ,  to start moving away from the  
image as a raw array of color frequencies and into a better representation , we must focus on specific points on it  
that stand out and have unique characteristics . These points are called features or salient points and can be  
picked using a multitude of methods. The features used by GuarddoG are corners and offer a good performance 
and quality trade-off. They are both relatively inexpensive computationally to extract and also exhibit persistence 
between frames produced from small movement of the camera , in normal indoor lighting conditions.

Some  feature  detectors  such  as  SURF  [7]  pick  points  that  not  necessarily  lie  in  a  corner  ,  but  
nevertheless have a large eigen value and are scale and rotation resistant. The feature detector used by GuarddoG 
is built with high performance in mind ( and thus lower average quality of feature points ) and is called FAST  
[13]. It classifies a point as a possible corner by casting a bresenham circle of radius 3 around it. Thus from the  
16 points casted if the intensities o f at least 12 contiguous pixels are all above or all below the intensity of the 
central point by some threshold it returns a match. 

*

Illustration 10: Left : An incoming image after passing through First-order Derivative  Edge 
detection , Right : The corners detected , highlighted with green X marks 



A second feature detector that is used as a lower performance higher quality alternative and performs  
adequately is the OpenCV cvGoodFeaturesToTrack method by Shi and Tomasi [15].  which utilizes a second-
derivative  filtered  image.  It  then  calls  cvCornerMinEigenVal  and  cvCornerEigenValsAndVecs  to  pick  the 
minimum  eigen  values  under  a  threshold  and  again  provides  a  list  of  good  features  on  a  reasonable 
computational cost. The inner workings of the algorithm are based on texturedness criteria that are reflected by  
the eigenvalues.  Two small eigen values mean a roughly constant intensity profile within a window, a large and  
a small eigen value , a unidirectional texture pattern and two large eigen values , patterns that can be tracked 
reliably such as corners. All these are extensively discussed in the original paper [15].  

M =( ∑ (dI /dx )
2 ∑ (dI /dx∗dI /dy)

∑(dI /dx∗dI /dy ) ∑ (dI /dy )
2 )

The minimal eigenvalue is then picked
since :

x1 , y1 corresponds with λ1

x2 , y 2 corresponds with λ2

a nd compared t o a threshold

A typical image retrieved from the camera consists of a finite number of pixels. The corners returned by  
the algorithms mentioned above are integers but in reality it is very improbable for a corner to lie exactly on the  
center  of  a pixel.  This inaccuracy is enough to effectively derail  the pose tracking algorithm that  takes the 
corners as its only input and has a tendency to accumulate errors and  thus we need more detail about where the  
corners truly lie. A detected pixel with coordinates (123,69) given as a result from the algorithms above may be  
fine tuned to a real number such as (123.349 , 69.512 ) for example. 
 

Illustration 11: An instance of the algorithm detecting a 
feature (corner) by sampling the 16 points of the circle 
casted around the point 7,4 using the FAST algorithm. 
The detector finds two similar colored points and 
succeeds in detecting the corner. 



 

To start approximating the new corner we have to build up a system of equations that when solved will  
give us a sub pixel approximation. The OpenCV method for this work is called cvFindCornerSubPix and it uses  
simple vector algebra to achieve it. It is based on the fact that the dot product of orthogonal vectors is zero and if  
one of the two vectors does not exist ( is zero ) it is again zero. This forms several equations that are all equal to  
zero which when solved provide a better set of coordinates for the corner.

〈∇ I ( p) , q−p 〉=0

The dot product of the Gradient of pixel p with q – p is in both cases zero 

With a system of enough p points the point q is re positioned with better precision but the process can be  
repeated with as many iterations needed until an accepted accuracy is achieved. For example to achieve a tenth  
of a pixel accuracy , the process must be repeated until two subsequent q approximations differ less than 0.10 
pixels . 
*

Illustration 12: Left : In which pixel exactly does the corner lie ? Right : As the same corner image is 
viewed from increased distance ( or in a increased resolution ) the inaccuracy gets smaller compared 
to the total area covered

Illustration 13: A 
hypothetical point p and 
the two vectors that lead 
to it from point original 
corner point q

Illustration 14: A 
hypothetical point p on 
the same line with q 



Mathematical Framework

 2.3  Template Matching and Integral Images 

 

After image processing is finished producing “versions” of the data that reveal different aspects of the input  
images , the next technique performed by GuarddoG is called Template Matching.  
There are numerous criteria that can be used to compare two image parts  and decide if they match.  

GuarddoG uses a combination of pyramid segmentation , feature and template based matching across different  
templates to achieve high performance without sacrificing result quality. To this end the use of integral images 
speeds up and greatly improves the algorithm ( performance-wise ) .

The most simple and computationally efficient method for comparing two blocks of pixels is named SAD ( Sum  
of Absolute Differences ) and is described by the following equation.   

SAD=∑
x=0

width

∑
y=0

height

∣(image1[ x ][ y ]−image2 [ x ][ y])∣

 This operation can be hardware accelerated on MMX and SSE2 instruction capable CPUs and thus is very lite 
weight. Although there are other metrics to find out if two image blocks match ( and how similar they are ) such 
as  MSE ( Mean Squared Error ) ,  SATD ( Sum of absolute transformed differences ) ,  Normalized Cross  
Correlation ( NCC ) and other even more complex methods.

To make up for quality loss , while keeping the increased performance that SAD offers GuarddoG compares 
different “versions” of the patches that resulted mainly from convolution operations on the original data. That  
way the computational cost is moved from the block matching operation that can be performed millions of times  
( especially in large images ) and does not take a guaranteed time to converting the image itself which has a  
fixed sized.

The different SAD results are then combined into a single value according to weights to compensate for the 
different  range of values in each of the sub images.  In order to further skip unneeded calculations a local  
histogram  is  used  as  a  threshold  that  can  completely  avoid  calculations  if  the  2  image  blocks  bear  no  
resemblance at all ( i.e. one is completely white and the other completely black ) 

*



Before going into more detail about the template matching function , another useful representation for massive  
calculations on images is called integral images , or  summed area tables.

I (x ' , y ' )=∑
x=0

x '

∑
y=0

y'

( image[ x ] [ y ])

 I(x,y) is calculated as shown above for every pixel of the image array . We can skip a huge number of adding  
operations and memory access for an arbitrary area of the image ( limited only by the maximum value of an  
integer on the machine ). Any block addition operation is thus reduced to 4 operations.

∑
x=x1

x2

∑
y= y1

y2

image [ x] [ y]=I (x1 , y1)+ I ( x2 , y2)− I ( x2 , y1)−I (x1 , y2)

The resulting operation is not SAD because the subtraction does not produce an absolute difference on each  
pixel , the resulting operation is a plain Sum of Differences which is an even worse metric than SAD but it has  
such a big performance impact , that when used in conjunction with the sub images mentioned before it can 
make dense disparity mapping feasible , and when used in small enough areas provides good overall results.

Instead of  :
|image1[x1][y1] – image2[x1][y1]| + |image1[x2][y1] – image2[x2][y1]| + … + |image1[xN][yN] – image2[xN][yN]| 

we have

image1[x1][y1] + image1[x2][y1] + … + image1[xN][yN] - ( image2[x1][y1] + image2[x2][y1] + … + image2[xN][yN] ) 
which is the same with

image1[x1][y1] – image2[x1][y1] +  image1[x2][y1] – image2[x2][y1]  + … +  image1[xN][yN] – image2[xN][yN] 

*

Illustration 15: The things taken into account when comparing patches



*

Illustration 16: Typically , we find the sum of the green area by adding all 
the pixels in it performing (x2-x1)*(y2-y1) operations

Illustration 17: We can find the sum of the green area by performing 4 
operations , I(x1,y1)+I(x2,y2)-I(x1,y2)-I(x2,y1) provided we have first 
calculated the integral array I 

Illustration 18: A SAD metric returns total mismatch of these two 
blocks. An addition of differences metric ( not absolute ) such as 
the integral imaging technique described before returns a total 
match of the two image blocks 



Mathematical Framework

 2.4  HAAR Wavelet based Face Detection 

 
Haar-like  features  are digital  image features used in  object  recognition.   Their  similarity with Haar 

wavelets is what gave them their name and they were used in the first real-time face detector. GuarddoG uses the 
OpenCV implementation of a haar cascade detector with an appropriate training file , while the implementation  
is largely based on the Viola Jones Face detection algorithm ( Robust Real-time Object Detection ) [44].

There are many approaches to face detection and as a refinement recogniton , including eigen faces [45]  
, image pyramids [46] , and mixed methods [47] , each of which have their own pros and cons .

The reason for choosing a Haar feature based face detection is that it is again accelerated by integral  
images and thus it can fit in nicely in the pipeline of the vision processor algorithm while performing incredibly 
well for upright faces that are the only kinds of faces that a small indoor robot should normally respond to. 

A Haar Wavelet is a small region that consists of two areas , one black ( low value ) and one white ( high 
value ) . As a pattern it can have a lot of  iterations , and the ones displayed bellow are the most common ones.
To decide if a feature is present , a simple sum operation is performed on each of the two areas and then the  
intensity difference is calculated between the white and black areas.

Haar feature detection is a multi scale function basis and frequency is generally determined by its scale,  
not the direction. As many image bases, it forms a laplacian pyramid where its subscale is the subsampled low-
resolution version (pre-filtered) of the signal plus a number of basis-projected versions of the signal for the high  

Illustration 19: Common Haar Wavelets

SumB = The Sum of color intensities in black area
SumW = The Sum of color intensities in white area

FeatureValue = SumW – SumB

If ( FeatureValue > Threshold ) { FeatureValue=1 }
                                  else          { FeatureValue=-1 }



frequency components of that level. For instance the HWT of an image at a given (frequency) level produces a  
low freq image (LL, smoothed and subsampled) + a LH, a HL and a HH component corresponding to the 1st,  
2nd and 5th pattern describe in the illustration 19.  That way the image is transformed to  an array of response 
numbers to these simple patterns and using a correct cascade of haar wavelets appropriate to the size , and  
orientation of detection this can be used as a tool for generic object detection. [14]

The Viola and Jones detector basically works using this framework to discard portions of the image as 
“non-faces”. To construct an optimal haar cascade the classifier is trained with two image sets , one with faces  
( for  face detection usage ) and one with non-faces and an adaptive boosting machine learning algorithm ,  
popularly coined as AdaBoost [38]  picks the best features that will drive the face detector.
A sample detection image is the following , using the OpenCV cvHaarDetectObjects implementation and the  
haarcascade_frontalface_alt.xml cascade. The good response rate of this method was also confirmed by realtime 
usage on the International Fair of  Thessaloniki 2011 where GuarddoG collected over 4500 faces on a course of a 
week with a very low false detection rate.

*

Illustration 20: Left : Sample face detected ( marked by purple circle ) , features detected by the corner  
detector explained at topic 1.2.1 ( marked with yellow dots ). Right : a possible HAAR cascade 
manually created for dramatization of the way HAAR Cascades digitize images and thus serve well for 
two dimensional face and object detection.

Illustration 21: Random faces out of a 
4500+ faces collection gathered during 
IFT 2011



*after

Mathematical Framework

 3.1  Epipolar Geometry 

 
 

Assuming a rectified input of two pinhole cameras with a known alignment , viewing a 3D scene, there 
are some geometric relations about the projections of 3D points among them.

Both cameras see the world from a different viewpoint , and while the projected image is different there  
are some geometric constraints that can be leveraged to extract depth data using disparity mapping , a process  
which will be analyzed later.

For reasons of efficiency this project uses cameras positioned in parallel so the epipolar plane forms a  
parallel line from frame to frame. This configuration is used to reduce errors caused by incorrect calibration and  
reduce the overall complexity of the algorithms that are based on matching parts from one image  to the other.

*

Illustration 23: A non parallel alignment 
where we can see highlighted the camera 
centers C and C' , the baseline that goes 
through both of them  , the  epipoles e and e' 
which are the intersections of the image 
planes with the base line  ,  the projection of 
the point X at x and x' when connected to the 
epipoles gives us the epipolar lines l and l' 

Illustration 22: The parallel alignment used by 
GuarddoG , all the epipolar lines are parallel. 
The base line between C and C' does not 
intersect with the image planes.



With the parallel setup the two projection images are essentially being produced by a translation of the 
camera center parallel to the image plane.  This results in the points e and e'  being in infinity , and the baseline  
never touching the image plane ( since it is parallel to it )

Since the projection of all the points on the line from C  to X  and C' to X lay on the l and l' epipolar  
lines ,  to find out the projection of the ducks head on the right image we can reduce our search area in the same 
height coordinates from image to image and that makes disparity mapping practical for computation. 

 From a stream of frames ( in the axis of time and not space ) observed as the robot moves , since we  
have lots of different types of movements and combinations of rotations and translations , epipolar geometry is  
once again a useful concept for the calculation of the fundamental matrix between two frames. The reason for 
this is because it provides the fundamental matrix equation constraints. GuarddoG though uses homographies 
and not the fundamental matrix for camera pose estimation since the 3d points have a much larger overhead  
since they have to be extracted through disparity mapping and typically have a higher error rate and lower  
coverage than the corners that are used for the homographies.

*

Illustration 24: The stream of incoming images spans both in time and space axis. 
Epipolar geomtery can help us move in both directions provided that the scene we 
view as we move remains static. 



Mathematical Framework

 3.2  Binocular Disparity Depth Mapping
on a parallel camera setup

 
Binocular disparity depth mapping is a procedure that  uses two image sources as input and produces an  

output containing depth information about the scene viewed. This is achieved by matching small parts from the 
left image to the right one and vice versa and calculating the difference of the image region projections.
Due to the complex ill-posed nature of 3D scenes , occlusions , specular lighting highlights and frequent low 
texture areas , it is a difficult task especially when computing a dense depth map , since there is a very large area 
to search for every 3D voxel of output. 

Since the disparity mapping algorithm developed as a part of the project differentiates from traditional  
block matching algorithms since it uses summed area tables , this topic will diverge from the others since it  
contains detailed comparisons between other algorithms. GuarddoG uses a parallel binocular camera setup on 
rectified images which simplifies the procedure since , as discussed in the previous topic , epipolar lines are 
collinear and parallel. This reduces the vagueness of the search domain and and also reduces the total number of  
worst-case operations , which as seen in the overview are in the worst case  24,576,000 comparison operations  
( using a 10x10 window this means 2,457,600,000 pixel operations  ) for two 320x240 images. For performance 
reasons the resolution of the two images is also 320x240 due to the target  low-end CPU  

Typical  disparity mapping algorithms use a metric such as SAD , SSD , MSE and others as mentioned 
in the Template Matching topic of this document. There are many algorithms for disparity mapping which use  
different approaches and ideas on the subject. A list of related disparity mapping algorithm can be found in the 
website  of  the  Middleburry benchmark for  stereo vision (  vision.  middlebury  .edu/stereo/eval   )  , 
which is a list of algorithms compared on the same rectified image datasets. A very informative taxonomy of  
dense disparity mapping algorithms , also published by the Middlebury College [30] is an invaluable source that  
compares  both  the  methods  and  quality  metrics  for  each  of  the  methods.  The  GuarddoG  algorithm  fares 
relatively well  when taking into account the simple principles of its  operation  ,  especially for low quality 
settings which use a large quantizer reducing the depthmap resolution .  

Disparity mapping , geometry overview                                      Illustration 25:  

http://vision.middlebury.edu/stereo/eval/
http://vision.middlebury.edu/stereo/eval/
http://vision.middlebury.edu/stereo/eval/


GuarddoG does not rely on very detailed depth maps since pose tracking happens using 2D points on the 
image  projections , and depth maps are mainly used for collision avoidance tasks.

The classic approaches on dense disparity mapping procedures use the model on illustration 25  and can  
be grouped in 3 steps.
1 – Preprocessing the image to make it suitable for the nature of operations on step 2
2 – Performing the comparison operations from one image to the other and storing the results on a depth buffer
3 – Refining the output depth buffer using some smoothness constraints

Comparisons ( step 2 ) are typically distinguished by their matching method ( SAD , SSD , absolute 
difference etc.) and optimization function ( graph-cut , dynamic programming , winner takes it all , simulated 
annealing , phase matching etc . ) . The  Middlebury College taxonomy paper [30] again provides a good and  
contemporary resource for sorting out the different algorithms. 

In  GuarddoG  the  approach  followed  ,  described  in  general  terms  is  to  focus  on  preparing  many 
representations of the data on the preprocessing step , and then use raw subtraction on them ( Sum of Differences  
with the help of  summed area tables )  with a window aggregation on a pyramid of different levels and a winner  
takes all optimization function.

The algorithm is compared with the libELAS and Hirschmuller disparity mapping algorithms which are  
briefly explained in the following paragraphs.

The first step , preprocessing ,  is typically the fastest part of the procedure , since it does not involve  
iterations on the image. Converting an image to its sobel derivative  for example requires 320x240x6 = 460,800 
operations ( much less than the 2,457,600,000 operations worst case for step 2 , with an even larger impact on 
real CPU time , due to less data locality overheads ) .  

Guarddog uses the following image representations :
                                                      → Second derivative → Summed Area Table Representation   
RGB Image →     Gaussian Blur  → Sobel Edge           → Summed Area Table Representation  
RGB (Movement ) Difference With last RGB Frame    →  Summed Area Table Representation  

The RGB Movement difference metric is also one of the areas of the GuarddoG algorithm that makes it 
better suited for disparity mapping on a stream of successive moving images since the moving edges act as a 
coefficient that helps matching quality ,  and thus still  disparity maps ( such as the ones on the Middlebury  
benchmark ) provide a worst result than real operation moving imagery. This is also the reason for choosing the  
specific camera controllers ( analyzed extensively in the hardware camera sensors topic ) since their 120 fps 
input and fast shutter enables “clear” edges that stand out on movement ,even in moderate movement scenarios.

The second step involves performing a very large number of comparisons between areas on the left  
image and areas on the right one to find a pair that is the closes match and gives the true disparity value for each 
of the pixels. Methods such as libELAS [26] use robust support points which are used as a basis for neighboring 
points and interpolation is performed on triangular areas for pixels between them thus reducing the time needed , 
instead of an exhaustive search through the whole image. This has a more dramatic performance impact on large 
resolution images , where there is also more information available for increased disparity resolution and thus the  
low resolution benchmark that follows doesn't  do justice to the algorithm , but  it  is  a good indicator of its  
performance. 
  

The next method compared with the GuarddoG disparity mapping algorithm is the work by Hirschmuller 
[27] implemented in the  StereoSGBM method of OpenCV , ( Semi Global Matching ). Its results are impressive 
both for their accuracy and their speed and as an algorithm it solves the disparity mapping algorithm by trying to  
minimize an energy function using mutual information [28][29]. 

GuarddoG uses a traditional disparity approach which calculates all the possible window matches and 



compares their score keeping the best ( winner takes it all ). 
The novelty of the algorithm is that it uses integral images and comparing  a combination of histogram , sum of 
differences on sobel  ,  sum of difference in movement ,  sum of difference in second derivative and sum of  
difference on rgb values metric , each of which is performed with 4 operations instead of a NxN for a window of  
size N. Although this idea and work done on this disparity mapping algorithm originates by own experiments  in 
2007 it still remains useful today even compared to state of the art disparity mapping algorithms targeted for real  
time operation. Integral images and sums of raw differences could also be used on many of the other algorithms 
that use a different approach for a cumulative improvement of performance in addition to their own speed ups. 

The third step , post processing typically re scans the output and normalizes it removing outliers and 
smoothing it with a gaussian or other function. Empty areas can be filled with neighboring depth values and 
iterative algorithms can pass the output to the second step again until convergence to a stable result or a timeout  
occurs. GuarddoG has a simple gap filling algorithm as a post processing filter but it is typically not activated  
since without outlier filtering it can help propagate noise and degrade the precision of the depth map. 

GuarddoG ( traditional ) disparity mapping algorithm pseudocode 
xL_Limit = height 
yL_Limit = width 
x_step = matching_window_width / detail
y_step = matching_window_height / detail

while ( yL < yL_Limit ) 
      { 
        xL = 48; // Starting point , typically 15% of the image size therefore 48 
for a 320x240 image 
        while ( xL < xL_Limit ) 
         { 
           best_match = Infinity; 
           if ( //Filtering low texture areas to reduce errors
                EdgesOnInputWindow(
                                     xL,yL,
                                     matching_window_width,
                                     matching_window_height
                                   ) > edges_required_to_process_threshold) 
           { 
             MatchWithHorizontalScanline ( 
                       xL,yL 
                       matching_window_size_x,matching_window_size_y 
                       &best_match, 
                       &xR,&yR 
                                         )

             if ( best_match != Infinity ) 
               { 
                 /* WE FOUND A MATCH */ 
                 RegisterDisparity(xL,yL,xR,yR,window_width,window_height) 
               } else 
               {  /* AREA IS EMPTY :P */ } 
           } 
            xL+=x_step
         } 
         yL+=y_step
       }



 
MatchWithHorizontalScanline 
( 
  xL,yL 
  matching_window_size_x,matching_window_size_y 
  &best_match, 
  &xR,&yR 
) 
{ 
  xR_Limit=xL 
  yR_Limit=yL // this can be an offset used for bad calibration situations 
  best_score=Infinity 
  while ( yR <= yR_Limit ) 
      { 
        if (xR_Limit>MaxDisparity )  { xR = xR_Limit-MaxDisparity; } else 
                                     { xR = 0; }  
        while ( xR < xR_Limit ) 
         { 
           score = ComparePatches 
                    (xL,yL 
                     xR,yR 
                     window_width, 
                     window_height 
                    ); // This function uses integral images to extract a score
                       // and this is the speed up of the guarddog algorithm
           if ( best_score < score ) 
             { //New best result 
               best_match=abs(xL-xR) 
             } 
          ++xR 
         } 
        ++yR 
      } 
} 

*data sets after here

Illustration 26: Disparity Mapping on the GUI of GuarddoG 



The following is a graph of covered area with depth information ( percent ) vs processing time 

for quality 1 we have values between 15,000 – 50,000 microseconds for coverage 0-35% 
for quality 2 we have values between 35,000 – 90,000 microseconds for coverage 10-60% 
for quality 3 we have values between 90,000 – 300,000 microseconds for coverage 10-70% 
for quality 4 we have values between 40,000 – 300,000 microseconds for coverage 10-80% 

The maximum coverage possible is 85% due to the initial value of xL , ( xL = 48; as seen on the 
pseudocode ) 

Quality 1 , (1,10,6,40) 30x30 , 15x15 , 8x8 Quality 2 , (1,10,6,40) 30x30 , 15x15 , 8x8

Quality 3 , (1,10,6,40) 30x30 , 15x15 , 8x8 Quality 4 , (1,10,6,40) 30x30 , 15x15 , 8x8

In the extensive comparisons that follow show the results for the different quality quantizers of the  
GuarddoG disparity mapping on the Tsukuba stereo set., and after that a comparison between the ground truth ,  
guarddog , libElas and Hirschmuller algorithms follows for quality setting 4 ( since lower settings have worse  
output ) and 320x240 size input images

In all the GuarddoG examples mentioned here there are 3 passes with 30x30 , 15x15 , 8x8 windows and 
the coefficients for each of the blocks in the comparison function is 1xRGB difference  , 10xMotion difference ,  
6xSobel difference , 40x Second-derivative difference
* data sets after here



Tsukuba Test Image Extensive Comparison

GROUND TRUTH OpenCV StereoSGBM Hirschmuller 34 ms

libELAS 52 ms GuarddoG ( quality setting 2 ) 66 ms

GuarddoG ( quality setting 3 ) 118 ms GuarddoG ( quality setting 4 ) 290 ms

*



Tsukuba Test Image Extensive Comparison

LineSeg 1300+ ms Segmentation Based 2000 ms

Variable Windows 26000 ms Fast Bilateral 32000ms

Adaptive Weights 1221000 ms Segment Support 2358000

*



Original Image GuarddoG libELAS OpenCV StereoSGBM

flowerpots 142 ms 51 ms 38 ms

gddg ( custom ) 249 ms 28 ms 36 ms

bowling 173 ms 48 ms 40 ms

cloth 433 ms 51 ms 31 ms

lampshade 147 ms 39 ms 36 ms

middleburry 171 ms 27 ms 37 ms

*



Original Image GuarddoG libELAS OpenCV StereoSGBM

wood 181 ms 40 ms 37 ms

aloe 346 ms 52 ms 38 ms

tsukuba 205 ms 41 ms 35 ms

cones 251 ms 52 ms 32 ms

teddy 200 ms 40 ms 33 ms

*



Mathematical Framework

 4.1  Homography estimation

 
 

Given two sets of two dimensional points and the correspondence between them  , a problem that arises  
is calculating the transformation that took place to lead from the first set of points to the other. This is called a  
homography and being able to find a close approximation of it is a tool that can be used to allow the camera  
position to be tracked , utilizing purely visual means. 

Supposing we have the points  :  p1 ( x1 , y1 , 1 ) , p2 ( x2 , y2 , 1 )  … pn ( xn , yn , 1 ) which correspond to the 
points  p'1 ( x'1 , y'1 , 1 ) , p'2 ( x'2 , y'2 , 1 )  … p'n ( x'n , y'n , 1 ) 

 
We want to find a 3x3 matrix H so that     p'i  =    H  pi   for every i from 1 to n 

[
x ' i

y ' i

z ' i
]=H [

x i

y i

z i
]

[
x ' i

y ' i

z ' i
]=[

h11 h12 h13

h21 h22 h23

h31 h32 h33
] [

x i

y i

z i
]

performing the multiplication

[
x ' i

y ' i

z ' i
]=[

h11 x i+ h12 y i+ h13 zi

h21 x i+ h22 y i+ h23 z i

h31 x i+ h32 y i+ h33 z i
]

for inhomogenous coordinates

[
x ' i / z ' i

y ' i / z ' i

1 ]=[
(h11 x i+ h12 y i+ h13 z i)

(h31 x i+ h32 y i+ h33 z i)

(h21 x i+ h22 y i+ h23 z i)

(h31 x i+ h32 y i+ h33 z i)

1
]



Provided we have enough ( correct ) point correspondences we can form enough equations to find the  
values of h11 , h12 ,h13 ,h21 ,h22 ,h23 ,h31 ,h32 ,h33 .but due to errors , not only caused by feature detection , but also by 
the matching  procedure even when using subpixel  accuracy points  that  have a high percentage of  correct  
matches the usual case is that the equations cannot be solved as they are incompatible and there is no possible H  
matrix that can satisfy them.

The solution to the problem is to start picking pairs and then compare their squared differences 

∑ (x ' i−
(h11 xi+ h12 y i+ h13 z i)

(h31 xi+ h32 y i+ h33 z i)
)

2

+ ( y ' i−
(h21 x i+ h22 y i+ h23 z i)

(h31 x i+ h32 y i+ h33 z i)
)

2

Gradually using a point picking algorithm such as RANSAC ( the next theory issue examined ) that due 
to its design can be resistant to outlier matches , an adequatel approximation can be achieved . 

The OpenCV methods for finding a homography , provided we have first extracted two sets of points  
and matched them is called cvFindHomography and it can use the RANSAC , a least median or a raw method 
using all of the available points.  Due to the importance of pose tracking for the camera of the robot , and despite 
of the stochastic nature of the algorithm the RANSAC option is chosen by guarddog to compensate for the  
medium quality of features points and their matches.

*

Illustration 27: In a picture and a few words , a homography finds out the transformation that 
took place between two views of a scene from two matched sets of 2D points



Mathematical Framework

 4.2  RANSAC 

 
 

RANSAC or RANdom SAmple Consencous is an algorithm that is designed to pick elements from a 
dataset in a way that maximizes a desired metric. It was first published in 1981 [37] and differs from other  
algorithms that perform similar tasks because it filters out outliers as part of  its process and for a high enough 
probability of a dataset element being an inlier and a matching configuration it returns a result  unaffected and  
undistorted by the outliers. 

The algorithm has a model that grades the points  using a heuristic  and iteratively picks small subsets of  
the data and keeping track of the error rate of a particular subset. Each time a large enough subset fits the model 
better than all previous ones this is recorded and kept as the new top standard which all feature subsets  try to 
improve.  The obvious downside of this algorithm is that it has a very high complexity upper bound for the  
procedure since it is stochastic ( non-deterministic ). To improve its performance it can be fitted with timeout 
counters that will return after a given time with the best result calculated at the time or it can return the best  
value when it is satisfactory compared to the maximum acceptable error threshold.  

A high-level  algorithm is given in the next page which gives a clear view of the inner workings of RANSAC. 

Illustration 28: Left : A collection of points that form a line with a high number of incorrect 
measurments , Right : RANSAC given criteria to match points along a line can successfully 
reject outliers and recover the line , Images from Wikipedia , public domain



RANSAC Algorithm pseudocode

input: 
    data - a set of observations 
    model - a model that can be fitted to data 
    n - the minimum number of data required to fit the model 
    k - the number of iterations performed by the algorithm 
    t - a threshold value for determining when a datum fits a model 
    d - the number of close data values required to assert that a model fits well 
to data 
output: 
    best_model - model parameters which best fit the data (or nil if no good 
model is found) 
    best_consensus_set - data points from which this model has been estimated 
    best_error - the error of this model relative to the data 

iterations = 0 
best_model = 0
best_consensus_set = 0
best_error = Infinity 
while ( iterations < k )
  { 
    maybe_inliers = n randomly selected values from data 
    maybe_model = model parameters fitted to maybe_inliers 
    consensus_set = maybe_inliers 

    for every point in data not in maybe_inliers 
        if ( point fits maybe_model with an error smaller than t )
            { add point to consensus_set } 
    
    if ( the number of elements in consensus_set is > d )
        /*this implies that we may have found a good model, 
        now test how good it is*/
        this_model = model parameters fitted to all points in consensus_set 
        this_error = a measure of how well this_model fits these points 
        if (this_error < best_error )
          {
            /*we have found a model which is better than any of the previous 
ones, 
            keep it until a better one is found*/ 
            best_model = this_model 
            best_consensus_set = consensus_set 
            best_error = this_error 
          }
     ++iterations; 
    }
return best_model, best_consensus_set, best_error

*



Mathematical Framework

 4.3  Optical Flow 

Optical flow is a term describing the process of registering movement on a moving scene. The goal of  
optical  flow  algorithms  is  to  robustly  track  the  points  on  an  image  as  they  move  and  overcome  various 
ambiguities that rise from the incoherent nature of  3d scenes. There are two kinds of optical-flow algorithms ,  
dense and sparse and they differ in the total number of points they are designed to work on. Dense algorithms are  
generally a lot more computationally expensive and are typically used in monocular setups to perform both 
tracking and depth estimation. 

There are many modeling approaches on building such an algorithm with the most famous being the  
Lukas Kanade pyramid [23][24] method , which will be extensively described , the Horn-Schnuck method [48] , 
work by Black and Anadan [49].
All the algorithms make some basic assumptions about the world they view and regardless of the way the data is  
processed ( using pyramids , velocity fields or other constructs ) . 

The assumptions for the Lukas Kanade algorithm are the following  :

Assumptions Details Weaknesses

Brightness Constancy Tracked surfaces retain the same color 
between frames 

shadow changes  , illumination changes , 
blinking lights , camera exposure 
changes , image noise

Temporal Persistence The rate of movement is sufficiently small 
between frames. 

fast motion , rapid movement , large 
computation times between frames lead 
to slower frame rate and thus larger 
movement between frames

Spatial Coherenece “Large” enough surfaces move in groups small particles moving in different 
directions

Illustration 29: Some bad instances on the optical flow 
problem , 1 Brightness constancy violation , 2   fast movement 
out of the detection window , 3 spatial coherence violated 



The assumptions mentioned are translated to mathematical constraints which are checked for being in 
effect in the neighboring regions of a feature point . 

The first one(brightness constancy)  is a very straightforward constraint and it basically means that as the  
time (t) passes , a specific point ( f(x) ) does not change its light intensity , so the the partial derivative of the  
change of the pixel value divided by the difference of time between the two frames must be zero.
  

Brightness constancy
∂ f ( x)

∂ t
=0

The second is the rule of temporal persistence and building on the first rule basically means that for  
every point I( x , y , t )  in a 2D image with coordinates ( x, y ) and at a specific time ( t ) has the same intensity  
response on an area “sufficiently close” in space and time  I( x + Δx , y + Δy , t + Δt ) , substituting the function I  
with the partial derivatives it describes and dividing by Δt we get the final equation which has two unknowns ,  
the velocity on the axis x and y , and thus cant be solved , this is were the third constraint comes in.

Temporal persistence I (x , y , t)=I (x+ Δx , y+ Δy , t+ Δt )

I ( x+ Δx , y+ Δy ,t+ Δt)=I ( x , y , t)+
∂ I
∂ x

Δx+
∂ I
∂ t

Δy+
∂ I
∂ t

Δt=0

dividing with Δt gives us

( I (x+ Δx , y+ Δy , t+ Δt )−I (x , y ,t ))
1
Δt

=
∂ I
∂ x

Δx
Δt

+
∂ I
∂ t

Δy
Δt

+
∂ I
∂ t

=0

... =
∂ I
∂ x

V x+
∂ I
∂ t

V y+
∂ I
∂ t

=0

∂ I
∂ x

V x+
∂ I
∂ t

V y=−
∂ I
∂ t

Spatial Coherence , provides us with the last tool required. Having a “large enough” image patch moving 
together allows us to take into consideration all the neighboring points and build more equations to solve for V x 

and Vy . The neighborhood can be as large as we want it but a very large window will be easier to violate the 
coherence constraint , a very small window on the other hand provides less data to work with and suffers from  
the aperture problem shown in the image.

Illustration 30: The aperture problem. 
First row : We have a black rectangle moving 
diagonally over a small detection window 
Second row :  Inside the detection window  
movement appears to be horizontal



For a 5x5 window we have the following over constrained system of equations

[
I x (P1) I y (P1)

I x (P2) I y (P2)

...
I x(P24) I y (P24)

I x(P25) I y (P25)
] [V x

V y
]=[

I t(P1)

I t(P2)

...
I t (P24)

I t (P25)
]

A v =b

This is then solved using a least squares minimization

A v =b
AT A v =AT b

v=
AT b

(AT A)

[V x

V y
] = [ ∑

i

I x ( pi)
2 ∑

i

I x ( p i) I y ( p i)

∑
i

I x ( pi) I y ( pi) ∑
i

I y ( pi)
2 ]

−1

[
−∑

i

I x ( pi) I t( p i)

−∑
i

I y ( pi) I t ( p i)]
AT A is called a structure tensor and the equations can be solved when AT A is invertible.

 AT  A is invertible when it has two large eigenvectors and this will happen in areas where texture moves in at  
least two directions. Thats the reason corners are good tracking features ( See corner and feature detection ) since  
they have large two large eigen values. 

Though GuarddoG cameras capture frames with a rate of 120 fps on 320x240 and this in theory is a fast 
enough rate to enforce the temporal persistence , this along with the aperture problem can be  mitigated using a 
gaussian image pyramid , iterating with a variable window.

*

Illustration 31: A 
gaussian  pyramid 
window



Mathematical Framework

 5.1  Dead Reckoning

Having reached this point and with the framework described in the previous pages we have a good depth 
point cloud for the scene viewed by the cameras , an accurate tracking of the camera pose using purely visual  
means , a list of possible faces detected and this is enough data to start reconstructing the environment the robot 
will move on. The simplest method for doing this is called dead reckoning. This approach uses a starting point  
which is considered known and marked as zero and calculates all the subsequent movement data from the pose  
tracker , the motor encoders and the accelerometer to estimate the next movement point , after the next position  
point is reached , it is considered known and the calculation produces a new point. The process is repeated for 
every movement and the result is a tree of movements originating from point zero. This is a computationally  
cheap and easy to implement method but this ease comes with a cost. The problem using this method is that it  
has no mechanism for error correction and even minuscule errors in every movement are gradually accumulated 
and distort the world map generated by the robot. Before discussing a more advanced obstacle/self positioning 
system that accounts for errors it is important to understand the principles of motion used by a dead reckoning  
algorithm.  
           Although this is still the mathematical analysis of the procedure we need to know a little more about the  
way that the robot is steered in order to make a precise modeling of the procedure. Most robots use differential  
wheels which is a configuration consisting of three or four wheels from which only two drive and the rest rotate  
freely in any direction as shown on illustration 33.  NL and NR are wheels can rotate freely in any direction 
without resisting movement. DL and DR are two independent electric motors of known diameter and they can 
rotate in both directions providing motion to the whole robot body. Planning ahead using the kinematics of the 
platform is a fairly easy task using the geometry of the drive system as shown in Illustration 34

Illustration 32: The drive system for a  
four wheeled front differential robot base 
configuration

Illustration 33: The underlying geometry 
when driving a differential drive system



Building on the simple mathematical equations derived using the geometry of the differential system 
( Illustration 34 ) , we can begin to combine route segments to plan ahead for larger maneuvers. Once we have 
an array of checkpoints that we have to pass through to reach the required goal ( using the A* algorithm which is 
analyzed in detail in topic XXX )   a second  algorithm that has  the task of maintaining the correct heading on  
each of the checkpoints by regulating power output  to the two motors can output the curved result  seen in 
illustration 35 .  Another simpler way to move between waypoints is to first make the required turn and then 
travel in a straight line.  With this type of movement there is no need for constant voltage regulation and motor  
encoder sampling since either both of the wheels have the exact same power output ( when going straight ) either 
they have the exact opposite ( when rotating )  In cases were it is not possible ( due to hardware constrains ) to  
maintain the power fluctuations needed to steer the differential drive with precision  the second approach is 
better and also easier to implement.    

As stated many times in this document , this simplistic mathematical model once again does not fully  
mirror  reality. Many additional complications to the problem include uneven terrain , imperfect gears and tires ,  
finite resolution encoders on the motors and latencies during sampling. Needless to say dead reckoning as  a  
generic method does not compensate for any of those and so the real path that the robot travels on starts to 
deviate gradually until it becomes completely erroneous.

*

Illustration 34: A path generated ( to go from 
left position to the right one ) using gradual 
turning driven by the differential supplying 
different power output to the wheels to control 
the curvature

Illustration 35: The same path 
running both motors at the same 
power output or at the exact opposite  
to perform a complete turn.



Mathematical Framework

 5.2  Simultaneous localization and mapping

Moving  forward  from Dead  Reckoning  we  must  use  a  more  intricate  algorithm that  will  improve 
precision on the generated map , both in terms of temporal location precision as well as obstacle validity. The  
basis of SLAM is the same as dead reckoning ,  the difference is that instead of using a single mathematical point 
at each of the algorithm iterations the robot is thought to be lying on a two dimensional plane with a given 
probability for any point on the area. The sensory inputs along with the data coming from the motor encoders  
produce a new probability distribution and this gradually refines the distribution up to a point when we can be 
certain about the robot's whereabouts.

A method that overcomes these problems is called Monte Carlo Localization [19][20][21][22][23] which 
is  implemented as a part  of  the Mobile Robot Programming Toolkit  created by the University of Malaga (  
www.mrpt.org ) . An other useful resource for SLAM methods is the OpenSLAM website ( openslam.org )  
which features a number of modified versions of similar algorithms.

Monte Carlo Localization is a global localization method , meaning that the algorithm begins with no a-
priori knowledge of the position of the robot whatsoever.
The algorithm is based on samples which are possible locations on the world the robot  moves on.  In each  
iteration of the algorithm an array of sensor readings is used. In GuarddoG these consist of the encoder values on 
each of the two wheels , the accelerometer reading , the 2 ultrasonic values and the point cloud with the tracked 
camera position.   

The algorithm works with a three dimensional state vector X [ x , y , θ ] that gives the position of the  
robot   and its heading and uses 2 steps , the prediction step and the update step. Prediction step uses the previous 
, or starting particles and applies the motion model of the robot on each of them by sampling. This approximates 
a new sample which does not yet incorporate sensor measurements. The update step consists of weighting the  
sensor readings from the sample we took on the prediction phase  against the measurements from sensors and  
computing  the likelihood of having a sample given the specific sensor input. By resampling from the weighted  
sample set we acquire a new sample set picked using high likelihood samples  and the process repeats producing 
a constant list of the most probable areas that fit both the existing model and the sensory input.

The method is an estimation of the Bayesian filtering problem where we try to approximate the probability of a 
point X given n sensor readings , or P (xn∣ Z n

) . Prediction phase ( using only motion data ) uses 

P (xn∣Z
n−1

)an d P ( xn∣xn−1 , U n−1) obtained by integration

P (xn∣Z
n−1)=∫P ( xn∣xn−1 ,U n−1) P (xn∣Z

n−1)dxn−1 .

*

http://www.mrpt.org/


 The Update phase utilizes the sensory input Z  to produce P (xn∣ Z n
)=

P ( zn∣ xn)P ( xn∣ Z n−1)

P (z n∣ Z n−1
)

Further resources about the theoretical justification of the algorithm are provided in the original publication from 
the team of Dieter Fox  [19][20][21][22][23] .

Monte Carlo Localization Algorithm
 
    input: 
        Distance Ut  
        Sensor reading Zt

        Sample set St={(Xt(i),Wt(i))|i=1,...,n} 

  //PREDICTION PHASE
    for (i=1; i<n; ++i)  // Update the current set of samples
       { 
         Xt  = updateDist(Xt, Ut) // Compute new location using motion model
         Wt(i) = prob(Zt|Xt(i))   // Compute new weighted probability 
       }
  //UPDATE PHASE
    St+1  =  null         
    for (i=1; i<n; ++i) // Resample to get the next generation of samples
      { 
         Sample an index j from the distribution given by the weights in St 
         Add (Xt(j), Wt(j)) to St+1  // Add sample j to the set of new samples 
      }
    return St+1 

*

Illustration 36: An instance of the Monte Carlo Localization Algorithm in the MRPT 
simulation application 



Mathematical Framework

 5.3  A* Path Finding

Assuming  a two dimensional map acquired by the operations above , and a stable track of the position 
of the robot , there is need for an algorithm to perform path finding , in order for the robot to be able to reach a  
target position and dynamically change its course when new obstacles are detected. The algorithm used by this  
project for this kind of functionality is A* , an extension of Dijkstra's graph search algorithm. Successful path  
finding is very critical because it means less battery drain due to unnecessary movements and better performance  
as a guard. 

A* uses a heuristic that has to never over-estimate the route cost , and such a heuristic is the Manhattan 
distance that is commonly used by many implementations.
The complexity of the algorithm is | h(x) − h * (x) | = O(log h * (x)) where h is the heuristic used.
The cost of the algorithm for each new node is calculated using f(n) = g(n) + h(n)  where g is the cost of the  
transition to the new node and h the heuristic for the transition to the goal node.
A* is  thus admissible since adding g which is an exact estimation of the distance from the source node to the  
optimistic heuristic since will always make the algorithm seek the solution with the lowest possible cost. 

Illustration 37: A* algorithm run instance ,every block has the 
manhattan distance on the lower right corner , the previous 
step distance on the lower left corner , and the sum on the 
upper left corner. 



A* Algorithm 
OPEN SET =  START NODE 
CLOSED SET = EMPTY 
while the node with the lowest cost in OPEN SET is not the GOAL NODE: 
  current = remove lowest rank item from OPEN SET
  add current to CLOSED SET
  for neighbors of current: 
    cost = g(current) + movementcost(current, neighbor) 
    if neighbor in OPEN and cost less than g(neighbor): 
      remove neighbor from OPEN, /*new path is better*/
    if neighbor in CLOSED SET and cost less than g(neighbor):  
      remove neighbor from CLOSED SET
    if neighbor not in OPEN SET and neighbor not in CLOSED SET: 
        set g(neighbor) to cost 
        add neighbor to OPEN SET
        set priority queue rank to g(neighbor) + h(neighbor) 
        set neighbor's parent to current 

Reconstruct path following parent pointers from goal to start 

One of the shortcomings of a raw implementation of an uncustomized A* algorithm is that in the real 
world diagonal movement is a little further away than than horizontal ( pythagorean theorem ) . The result is that  
returned paths can be “non optimal” for a real world moving robot. Added to this problem comes the fact that in  
physical movement one tends to hold a course turning as little as it is possible.  A* can provide an optimal  
solution that has many turns , but this will take more time for the robot to be traversed. The solution to this  
problem is keeping the heading of the robot as an information vector on every opened node and adding an extra 
weight when turns are made , while also adding an extra weight when performing diagonal movement to balance 
them.

The final element needed is a way to represent uncertainty about the mapped obstacles since there may 
be errors in the input ,  not only caused by “mis-detection of obstacles” but also by the the lack of detail of the 
map since an area of 200 m2 quantized at a scale of 10 cm2 per block results in an array sized 2000x1000 that 
cannot reflect the  full complexity of the scene.

Using these modifications , the output becomes better but there is a further improvement that can be  
achieved by using the largest possible straight paths to connect sub regions of the A* paths. Doing that the  
turning maneuvers of the robot  are reduced to the fewest  possible.  To achieve that  ,  after  a path has been  
extracted ,instead of reconstructing the path following the parnet pointers we use a second pass algorithm runs  
which casts a line  ( using Bresenham's line algorithm ) from the last step of the path to all the previous ones  
until an obstacle is detected. The previous point before the obstacle is then marked as connected  to the first one  
and the algorithm continues until the source node is connected.  This improves the operation of the robot . This 
could also be improved in the future to use odometer based curves instead of point to point turning , something  
that would also make the movement of GuarddoG seem more life like.

*



*

Illustration 39: The green block is the source , the blue the target , red/black blocks are obstacles and 
gray areas , areas of uncertainty. The yellow path is the one that A* returns and the red line the 
compressed path for as little turning as possible.

Illustration 38: The problems that may occur using an 
uncustomized A* Algorithm , and how they are corrected 



*

Illustration 40: A small maze like instance for the A* algorithm on the GuarddoG world mapping GUI 
and the output path

Illustration 41: The 3D appearance of 
obstacles

Illustration 42: The 2D appearance of 
obstacles , which can be detected by ray casting 
on the depth map of illustration 37



Mathematical Framework

 6.1  First-order logic and a Wumpus like world

 
GuarddoG lives in a Wumpus like world , or a Shakey one also taken from Russel & Norvig's AI a 

modern approach. Its mission is to find intruders in a random home layout .  It  is only natural for an agent 
operating in such a kind of world to use first-order logic and forward chains of inference to decide its actions and  
interact with his human owners. GuarddoG uses a string passing interface for executing jobs. It features some  
direct and immutable commands such as forward , backward , left and right , labels such as kitchen , living room 
, toilet and operators to combine them. Although inference rules have been removed from the design ( at the time  
of writing ) to reduce the surface of the project they are presented here for reference and they will be reinstated  
in future versions of the robot.  

This kind of functionality on one hand unifies the command interfaces of the robot and on the other hand 
makes it more intelligent and human-like. Wether the robot is controlled via a voice to text module , a handheld  
mobile device , a computer or a web interface the input is always strings of english sentences or buttons that can  
be aliased to strings and this makes development much more practical and the robot much more easy to control  
since it responds in the same way , whatever the medium of communication. 

The syntax of the commands is simple and it looks like this

FORWARD(100cm)
NEW_PLACE(KITCHEN)
GOTO(TOILET)
SIGNAL ALARM
AUTONOMOUS MODE(1)

Inference  can  be  used  by  creating  an  object  model  such  as  the  one  used  in  the  OpenMind 
( www.openmind.org ) project which is based on a real world knowledge base. In the future a system possesing 
such a database coupled with a vision based object recognition algorithm could make correspondances between 
visual cues and their string descriptions that would easily be integrated to a the unified string interface described  
above.  Such recognition engines for point clouds already exist with most notable the  RoboEarth project (  
www.roboearth.org ) which strives to be a world wide web for robots and where every object recognized by one  
robot can then transmit its knowledge and share it with all the other robots.  A list of the possible commands that  
GuarddoG can execute can be found in the software unified string interface topic. 

There is no point in further analyzing the mathematics behind first-order logic calculus in this document 
since it is a  mature and well documented subject . The book Artificial Intelligence of Stuart Russel and  Peter  
Norvig  is  an  invaluable  resource  for  the  theory  behind  AI  systems.  [0]  Robots  with  human-like  artificial  
intelligence have a long long way to go and this is apparent for any one that has a good understanding of the 
problem's  vast  nature.  GuarddoG focuses  on seeing and space perception  and tries  to  acknowledge  simple 
commands and scripts.
*

http://www.roboearth.org/


Implementation of Mathematical Framework

 6.2  The big picture 

Having explained all the key theory concepts its time to move away from the purely mathematical/algorithmic  
domain to the real implementation onboard GuarddoG :

Camera Model A pure pinhole camera model abstraction is assumed 

Camera Calibration

Camera calibration is performed a priori using a 10x7 
chessboard pattern and the OpenCV implementation to 
be  able  to  be  comparable  to  existing  projects.  The 
calibration parameters extracted are stored in a file and 
used throught the project. 

Image Rectification

The calibration parameters supplied by the calibration 
step  are  read from the storage file at each program 
startup and are used by the pipelining to transform the 
raw images  coming from the  cameras  to   calibrated 
equivalents  where  the  mathematical  model  of  the 
pinhole camera is in effect.

Image Processing

The calibrated pair of images are first compared to the 
last  pair  received  and  if  they  have  a  “noteable” 
difference , acquired by direct subtraction of each of 
the  pixels  ,  they  are  transformed  using  convolution 
matrices  to  their  gaussian  blur  ,   sobel  ,  second-
derivative and integral  image  representations.  If  the 
scene is static they are not processed at all saving cpu 
time. 

Feature Corner Detection
The sobel representation passes through the algorithm 
explained in the corresponding theory topic and a list 
of corners is returned and paired to the image.

RANSAC / Homography Estimation 
  Optical-flow estimation 

The  corner  list  extracted  is  juxtaposed  to  the  last 
corner  list  and  using  RANSAC  and  the  OpenCV 
implementation  a  precise  approximation  of  the 
transformation that took place is returned.

Haar Wavelet Detection
Using the input images and cvHaarDetectObjects with 
a training set for face detection  , a list of faces is 
returned.



Disparity Mapping
GuarddoG can use any one of the algorithms described 
in  the  disparity  mapping  topic  to  extract  depth 
information from a pair of images.

A* Path Planning / Dead Reckoning 

Using sensory input  from the ultrasonic  sensors  and 
the  motor  encoders  as  well  as  the  depth  map  ,  the 
camera  transformation  extracted  with  the 
homography , the face list and accelerometer data the 
position  of  the  robot  along with  close  obstacles  are 
added  to  a  2D  map  where  A*  can  be  executed  to 
provide a path towards the target position of the robot.

First-order scripting logic

State keeping and driving the robot towards a useful 
purpose  ,  leveraging the different  abilities the robot 
and performing the desirable work  is assigned to the 
scripting logic that synchronizes all of the individual 
parts  of  the  project  and  checks  for  errors  in  their 
execution.

All  of  the above have been implemented as part  of  the project  ,  but  the  part  that  is  currently  an  
implementation deficiency is the scripting logic “Robot Hypervisor” that manages the many sub libraries used 
by the project. SLAM is also not implemented but used on tests using an external completely separate project 
called MRPT. Adding to the difficulty to implement it are hardware constraints , such as the bad quality of the  
physical handmade assembly of the robot , the fact that it is mainly powered using the electrical grid which 
means dragging heavy power cables which get tangled often. All these make position estimation very difficult  
and are discussed in the next chapter of this document which explains hardware related choices and limitations. 

It is also a note worthwhile , that most of the complex  functionality resides in the “visual cortex” and  
scripting logic. Sensor communication and low level details although they too adhere to mathematical principles  
are very common place in bibliography and as implementations even on hobby level robotics. For those reasons 
and reasons of concision  they have been exempted from this theoretical analysis.

The next illustration outlines the way the individual methods form a common data pipeline implemented 
in VisualCortex , MasterPathPlanning and the MotorHAL libraries of the project . The “intelligent” part of the  
project resides in the right part of the RoboKernel  , not shown in this graph . The implementation follows the 
design that arises naturally from the nature of the operations performed on the data and all notation inside the  
program's  source  code  matches  the  notation  used  scientifically  and  in  this  paper  to  make  the  code  more 
maintainable and easier for a potential new programmer that may want to use it. 

*



*

Illustration 43: A schematic of the pipeline of data as they go through the 
system. This image is the connection diagram for all the methods presented 
here



Hardware

 2.1.1  Overview

Building the physical platform of GuarddoG from scratch was a daunting task , partly because it meant  
delving into uncharted waters for a computer scientist and partly due to the numerous options available that 
should  be  tried  and  dismissed  after  a  trial  and  error  procedure.    This  has  little  if   none  scientific  value 
whatsoever but is a good warning about the kind of problems one will face when implementing these algorithms 
in real world application , and not just in a computer simulation.                                                               
  

The project started with an implementation based on the Lego mindstorm kit with wireless transmission 
of video and commands to the robot via bluetooth. This proved to be a wrong approach for a number of reasons  
which  became evident  as  time  passed  ,  due  to  the  small  range  of  bluetooth  ,  the  issues  of  privacy  when  
broadcasting unencrypted video , cost , small size and bad viewpoint ,  stability and many other design problems. 
The second step was moving away from this approach and performing all computations on board the robot , 
which meant larger power consumption , larger batteries more weight and a chassis that should support it.

*

Illustration 44: Early experimentations while trying to create the initial GuarddoG 
platform

Illustration 45: Moving on a local processing solution while still using the lego 
mindstorm kit



This design proved to be better suited for the task but the mindstorm kit reached its limits , mainly due to  
the weight of the whole contraption which could not any more be supported by the small motors and wheels.  
Many other solutions were tried ( such as filling the plastic on the wheels with cotton ) reducing the size of the  
PSU and others but the idea of using the mindstorm kit was finally abandoned.

After a lot of iterations a plastic body with a rigid base was chosen which is the ideal fitting size for the  
project but issues of power consumption still remained. Instead of moving the whole 4+ kg base every time a  
look towards a new direction was needed , it was much more efficient to turn just the “head”. Other problems  
included the difficulty of calibrating the two cameras since their relative alignment changed as the robot moved 
because they where loosely hold together by a clamp like wooden board. To improve this a 2 degrees of freedom 
head was made from 2 tuppers ( which is actually the most cost effective way to make one ) along with a laser  
cut plexi glass clamp that fitted exactly the camera dimensions thus improving , but not solving , some of the 
alignment  and calibration problems.  To improve camera tracking in  low texture ,  low brightness  areas two 
headlights were added to the design that could occasionally flash for illumination , and interaction with humans  
to provide visual cues for the state of the robot.  Along with them an arduino which is open hardware with  
excelent documentation along with ultrasonic sensors  , an accelerometer and other peripherals  was included in  
the design.

*

Illustration 46: The cotton filled wheels and the attempts to reduce weight by 
changing the PSU and other parts 

Illustration 47: Moving on to GuarddoG mk4 



Though this design was the most  fitting for the job it  was still  problematic mainly due to the poor  
workmanship on my part and the fact that the different ideas have been literally patched the one on to the other  
as they got added to the design. Thus knowing what the final requirements where after a long procedure and trial  
error a new GuarddoG was designed using CAD in order to be able to be produced at fixed parts and made easier  
to assemble and disassemble instead of relying on random parts. One of the most important final changes was  
the use of a new camera pair which will be detailed on the following topic since it was a major improvement to 
the old camera set of the robot.

*

Illustration 48: A more recent ( at the time of writing ) state of the GuarddoG physical implementation 

Illustration 49: GddG mk4 Illustration 50: GddG mk5 a.k.a. Jack 
mockup , the final version of GuarddoG which 
is yet to be constructed



Hardware

 2.1.2  Camera Sensors and Synchronization issues

 

The cameras used by GuarddoG are based on the OV7720/OV7221 CMOS VGA (640x480)  Sensor , 
and are cheap and easy to find as they are the camera system used by the Playstation 3 Gaming Console

Camera Sensor Key Specifications 
Array Size
Power Supply Digital Core Voltage
Power Supply Analog Voltage
Power Supply I/O Voltage
Power Requirements - Active 
Power Requirements - Standby 
Temperature Range 

Output Format (8-bit) 

Lens Size 
Max Image Transfer Rate 
Scan Mode 
Electronic Exposure 
Pixel Size 
Fixed Pattern Noise 
Image Area 
Package Dimensions

640 x 480 
1.8VDC + 10% 
3.0V to 3.3V 
1.7V to 3.3V 
120 mW typical (60 fps VGA, YUV) 
< 20 μA 
-20°C to +70°C 

• YUV/YCbCr 4:2:2 
• RGB565/555/444 
• GRB 4:2:2 
• Raw RGB Data 

1/4" 
60 fps for VGA 
Progressive 
Up to 510:1 (for selected fps) 
6.0 μm x 6.0 μm 
< 0.03% of VPEAK-TO-PEAK 
3984 μm x 2952 μm 
5345 μm x 5265 μm

Illustration 51: Left : The CAD designed and laser cut plexiglass rig that keeps the 
cameras aligned correctly , Right : The PS3 cameras without the rig.



Stereo  vision  on  a  mobile  robot  traditionally  requires  expensive  hardware-synchronized  cameras.  
Because standard stereo reconstruction algorithms assume that the images from the left and right cameras are 
captured from a common scene at the same time , any motion that occurs between the left and right cameras  
snapshots is equivalent to an error in the model. This error, causes the quality of the depth mapping to decrease  
and the distance notion of the robot to be distorted , something that in turn impacts all of  its functionality as  
errors tend to accumulate .

Hardware synchronization which means sharing a common hardware clock , has been always available 
only in high-end and custom hardware stereo vision systems. Thankfully , and after experimenting with different  
camera solutions the inexpensive PS3 Eye camera proved a very high quality and performance choice since it is  
built using the OmniVision OV7720 chip-set that is comparable to those found in many machine vision cameras.  
The  PS3  cameras  can  be  hardware-synchronized  using  the  exposed  frame  clock  input  (FSIN)  and  output  
(VSYNC ) pins . By shorting the  VSYNC pin  to the others cameras FSIN pin the cameras share a common  
clock . To reduce the risk of a difference in ground potentials damaging the OV7720 , each camera has to be  
also modified to share a common ground  [11]  . 

This  hardware overhaul  guarantees that  both cameras capture images simultaneously ,  but  does  not 
guarantee that the frames will travel retaining their synchronization when sampled using the Universal Serial  
Bus (USB) . Each camera has its own hardware clock and that means that in addition to the small distortion in  
space ( due to optics ) we have a small distortion in the fourth dimension , the axis of time. To tackle this 
problem GuarddoG uses cameras that have a very fast refresh rate of 120fps @ 320x240 or 75fps @ 640x480 
pixels with a rewired shutter (FSIN , VSYNC pins ) in order for synchronization on the hardware side of the 
camera snapshots. A secondary problem is that there is non uniform latency over the USB cable and the USB  
host controller . This problem is combated using direct frame grabbing via V4L2 , zero-copy passing by pointer  
to the beginning of the image pipelining and static linkage of the libraries consisting of the project to reduce  
delays and overheads.

*

Illustration 52: The position of FSIN and 
VSYNC on the camera board

Illustration 53: Screws on the PS3 cameras and a 
schematic of the alignment used



Hardware

 2.1.3  Motor System and Peripherals

GuarddoG uses two EGM30 motors made by Devantech which feature an encoder a 30:1 gearbox and 
work at 12V. They are rated for usage in medium size robotics applications ( weights up to 5kg ) and perform  
very well.

The manufacturers technical specifications follow for reference  .

Rated voltage 12v 

Rated torque 1.5kg/cm 

Rated speed 170rpm 

Rated current 530mA 

No load speed 216 

No load current 150mA 

Stall Current 2.5A 

Rated output 4.22W 

Encoder counts per 
output shaft turn 

360 

Minimum Speed 1.5rpm 

Maximum Speed 200rpm 

  
*



GuarddoG uses 2 ultrasonic sensors positioned in the left and right front of the robot. Although the robot 
has a fairly robust vision system and depth estimation it has its limits. Just as a human that stands right in front  
of a wall has no way of  determining the obstacle since there are literaly no visual cues except by the haptic  
feedback  one  experiences  by  touching  it  so  does  a  robot.  Due  to  the  absence  of  arms  and  synthetic  skin  
ultrasonic sensors come in as a replacement and enable the robot to have a sense of obstacles on very dark and  
very close situations.

Frequency 40kHz 

Max Range 4 meters 

Min Range 3 centimeters 

To help with the task of registering movement correctly a low cost dual axis accelerometer is affixed to  
the chassis of GuarddoG. It can register accelerations and decelerations that might be caused by bumping on a  
wall somebody pushing the robot or in case of sudden change in motions. Although an IMU provides much more 
precise data when implemented along a vision system [50] , due to the small budget of the project this just had to 
do. A larger three axis accelerometer could in the future be affixed to the head of the robot to help the vision  
system conserve its computational powers just like the ear labyrinth does on a human.

Measures ±3 g on each axis 

Low current  operation , less than 4 mA at 5 VDC 

Movement/Lack of movement detection

* 

Illustration 54: SRF-05 
Ultrasonic Sensor

Illustration 55: 
Memsic 2125 
Dual Axis 
accelerometer



Hardware

 2.2.1  The Energy-Heat-Weight-Cost Problem 

Maybe the most mission critical and expensive element for a robust robot right now is its power supply 
and battery autonomy.   Although the computational speed of modern computer systems has continued to rise in 
exponential rates while also slowly decreasing its power consumption , the same scale of improvements has not  
been made in batteries and consumer grade available power technology. 

The power consumption for a mobile robot is very high and relative to the mass , movement speed and 
total mileage targeted for a platform and reversely related to the maximum service time of the robot between two  
charging sessions. GuarddoG is supposed to guard homes and offices of 100m2 area something which takes a 
great toll on the total autonomy time. 
By increasing the capacity of the battery one increases the cost and (or) weight of the robot. By increasing the 
weight of the robot this increases the energy required to carry the battery around and thus the waste “heat” 
produced. 

The problem can be mitigated by including one or more charging stations in the facility that the robot 
operates in. This way they can act as rest points in between patrols. According to the battery chemistry ( since  
most contemporary battery technologies don't have memory issues anymore )  this can also be used to keep the 
charge level sufficiently high and thus delay full charges until the battery level is so drained that it will not last  
for another patrol number multiplied by a safety factor.   

Battery Technology Cell Voltage En. Density Mj/Kg Cost

NiCd 1.2V 0.14 €

NiMH 1.2V 0.36 €

Lead/Acid 2.1V 0.14 € €

Lithium/ion 3.6V 0.46 € € € €

Fuel Cell - 1.5+ (?) € € € €

Gasoline/Diesel - 70+ € € €   

A more long-term problem is that all the battery cells mentioned above have a finite ( and relatively 
small ) recharge cycle lifetime.  Lithium/Ion for example lose 10% of their capacity each year in the best case ,  
without taking into account the damage done to the battery by overheating , high current demand spikes and 
other real usage scenarios. 

This is a very large problem since robots should ideally have the same kind of operational uptime as 
web-servers and other computer infrastructure but an empty battery can be a catastrophic failure which will  
render them useless.  The same goes for their life cycle as products and the lifetime of the other parts of the robot  
that should be the maximum possible in order to reduce waste and improve cost effectiveness for a possible 
buyer.*



Other novel ideas on power supply solutions is wireless transmission of power ( for small scale devices )  
, which has a long way to mature and will probably never be sufficient to move a 5+ kg device. 

As a part of the GuarddoG design work , a large number of options was tested and the final battery pack 
chosen was a custom 12V NiMH 10 cell battery that could only power the robot for approximately 1h ( on an  
average power consumption scenario ). Other alternatives were tested but due to the lack of available funds the 
power supply is  currently a large deficiency both in GuarddoG as well in most  other commercial available 
robots.

The most promising technology for robots seems to be Fuel Cell technology which uses water and the 
electrical grid to charge fuel cells that are like small engines and in turn generate electricity on board the robot in 
the  fashion  of   gasoline  that  recharges  the  battery  in  a  car.  An  other  source  of  relatively  cheap  power  is  
combining battery packs from laptops that since to their large scale economies can be relatively cheap. 

Not having made a final decision about the battery type , meant not being able to make a charging station 
for it , so a small switching module was designed and implemented that basically switches between 12V DC 
from the onboard transformer from 220V AC , the charger of the NiMH battery and the NiMH battery itself.

GuarddoG mk4 currently uses an Intel Celeron 1.2Ghz Mini-ITX Motherboard. Instead of a hard-disk a 
flash memory USB stick is used as a hard-drive reducing 5W of consumption and making the robot more shock 
resistant. To further cut down battery drain the GuarddoG platform is planned to move to an ARM architecture 
so that the logic computers could be directly powered using 5V 1A supply , something that will make the robot 
be able to drop the need for an onboard transformer and make it  even lighter.  Eventually using composite  
materials the weight budget will be 70+% distributed to the battery and motor system and the rest 25% to the 
chassis , leaving 5% of the weight for electronics. A project that has not yet been released at the time of writing 
but will probably be the host computer for future versions of GuarddoG will be the Raspberry Pi featuring an 
ARM 700MHz CPU 256MB RAM and USB support. Due to its low specs there might be a cluster of two or  
more involved in the design  , one dealing only with the visual routines and the other one with controlling the  
peripherals , logic and Speech to Text. Functionality. The peripherals of GuarddoG are controlled by an Arduino 
which has a very small energy footprint compared to the motors and main computer. Networking is based on a 
802.11 b/g WiFi adaptor that operates as a WiFi access point and through a GSM module that  can operate 
without WiFi infrastructure utilizing SMS and possibly GPRS/3G  connectivity.

*

Illustration 57: Battery types tested,none fitted 
the cost/weight-energy requirements of 
GuarddoG but NiMH was the chosen chemistry

Illustration 56: The custom power "switch" 
between charging AC operation and DC 
operation , with help from Nikolas Zervos 
( Telcom Greece)



The GSM module can also build upon the existing infrastructure for consumer cellphones , since each robot will 
have a unique IMEI (  International Mobile Equipment Identity ) enabling some degree of theft protection. In 
Greece  since  2010  it  is  mandatory  to  associate  a  personal  identification  number  with  each  mobile  phone 
number , so this also could serve as a framework for managing whose property a robot is. 

Of course a consumer robot application should use a much more powerful CPU than the one that GuarddoG 
relies  for  computing  tasks.  A custom  VLSI  could  also  provide  a  substantial  speed  up  with  low  power 
consumption requirements , and the same would also be true about the arduino part of the project which could be 
more robust using a custom integrated circuit more closely coupled with the main system. Alas these things were 
out of scope for this project so they are ideas not yet realized.
 
Having explained the reasoning and the problems we are trying to resolve , the following system diagram gives a 
clear look on the internal  communication scheme. The Arduino UNO uses I2C communication or analogue 
sampling to communicate with its peripherals and the onboard firmware is responsible for exposing a high level  
digital interface for all of them.  

*

Illustration 58: A connection diagram for the different hardware modules



Hardware

 2.2.2  Parts List

Casing Costs

Various Plastics , screws , etc = 45 euro 

Embedded Electronics 
1x Arduino = 25 euro ( Uno )
3x Infrared Led = 3 euro
1x RD-01 ( or RD-02 Devantech motor kits ) = 130 euro 
2x Buttons ( power -on ) = 2 euro
2x Switches ( power supply ) = 2 euro
2x LED HeadLights = 10 euro
2x Ultrasonic Devantech SRF-05 with mounting = 40 euro
1x Dual Axis Accelerometer ( memsic 2125 ) = 30 euro
Subtotal : 252 euro

Computer Hardware
( 1x Fan = 5 €
  1x AC-DC 12 V Converter = 30 €
  1x PicoPSU 90W = 45 €
  1x Mini-Itx Motherboard = 65-75 € ( Currently on guarddog Intel D201GLY2 )
  1x 512-2048MB RAM DIMM ( on guarddog 512MB DDR2 ) = 30 € )
or 
( 1x Car (12V) USB power supply = 5 € 
  2x Raspberry Pi's = 52 € 
  2x USB cables = 3 € ) 
plus
1x WIFI PCI card ( WG311T ) or USB  = 30 € 
2x Webcams ( On guarddog MS VX-6000 ) = 92 € , 2xPS3 Eyes = 60 €
1x USB Flash Drive 8GB + = 20 €

Subtotal : 327 € mk4 (old hardware)  or 
               170 € mk5 (new hardware)
 
 

Total 624 € mk4 or 467 € mk5
                                                                                                  ( batteries not included )
*



Software

 3.1.1  Overview 

The software for GuarddoG has gone through 3 major rewrites from scratch. During its development  
literary  all  aspects  of  the  source  code  changed  ,  from  the  programming  language  and  design  pattern  of 
implementation to the Operating System and libraries used. An effort was made firstly to have the best possible 
performance as far as the architecture could impact it , low complexity and good seperation between modules.

In the beginning the whole project was a single executable and all the functionality was embedded in a 
graphical user interface on a pc running Windows XP. As the software grew larger and at the time of the first  
transition to  the  embedded computer  onboard GuarddoG the  limitations  of  this  approach became apparent. 
Windows XP was not made for this kind of deployment  and using it running on a compact flash memory stick it  
thrashed it destroying it after approximately 5h of usage ( with all virtual memory settings , file indexing , etc.  
off  ) . The operating system was replaced with Windows XP Embedded and although the issues with the flash 
memory stick were solved using the File Based Writing Filter which prevented direct reading and writing to the 
actual device and instead simulated the files in the RAM of the computer , permitting permanent writing at the  
end of the session by passing the changes to the actual file system on the Compact Flash device and thus greatly  
conserving read/write cycles. On the disadvantages of the WinXP Embedded OS there were many stability issues  
( blue screens ) and driver problems which were difficult to be traced due to the closed source nature of the OS 
and eventually  the decision was made to  completely rewrite the  daemon for a  Linux/*nix based OS.  The 
graphical user interface was split into 7 major static libraries and on top of them two different executables could 
be linked , one for “CLI-daemon mode” on the headless environment of the GuarddoG embedded computer , and 
one with a full GUI based on wxWidgets for the development computer that made debugging easier providing 
visual tools.  

Illustration 59: A schematic of the software outline , rounded rectangles are external dependencies 
plain rectangles are libraries implemented as a part of the project



*AFTER

The statically linked libraries share a common memory stack and heap and that allows efficient memory 
reuse without  unnecessary “interface” bureaucracy which is  a common performance overhead.  Some of the  
libraries have standalone functionality and others with the prime example being libRoboKernel.a are delegation 
libraries that  coordinate the overall task accomplished. 

During  the  Operating  System's  initialization  phase  and  after  run  level  5  is  reached  the  GuarddoG 
initialization bash script ( guarddog_init_service ) is called and starts to prepare the runtime environment for the 
main application. A tmpfs , a partition existing entirely in the RAM memory of the computer is created under  
RoboVisionRuntime/ and the contents of RoboVisionCLI are copied there in order to minimize flash memory 
wear.  Persistent storage is provided by accessing ../DataSets which is the designated directory for storing non  
volatile data , such as usage statistics , faces , state keeping etc. Permissions are also taken care of since tmpfs  
typically start of requiring root privilleges.

          Secondary daemons such as the gsmsmsd are kickstarted and after testing if they all work execution is  
passed to the RoboVisionCLI using the noinput flag since no direct user input will be possible ( the console runs 
in the background ) . When the RoboVisionCLI executable stops the script resumes killing all possible processes  
that may remain running and deallocates the tmpfs.

           RoboVisionCLI process in turn being an instance without user input basically calls the initialize function  
of RoboKernel which starts all the sub modules and sleeps until it receives information from the RoboKernel  
that signals termination.

           RoboVisionX is an alternate executable that can be called adhoc without all the tmpfs intiializations  
running from the RoboVisionX directory and it spawns a wxWidgets GUI which provides controls and visual 
versions of the data handled by the RoboKernel and this is the interface used during the development of the  
project. The directories for datasets continus to be ../DataSets so this is too a very easy and non-obtrusive design  
since there is no need for additional lines of code to manage between development directory structure and actual  
on board usage decreasing the surface area for bugs and easily avoided problems.  

            A web interface which is provided using PHP and Apache can be used to access the platform using any  
device with an internet browser. This service is currently protected using a simple password scheme but this is 
also a very serious security topic since a compromised robot can pose a serious privacy and physical threat for its 
owners  many times worse than a  compromised desktop computer.  This  kind of  functionality  can be easily 
deactivated but it is ultimately very useful given a proper security identification system for remote operation  
using cheap internet enabled mobile devices that are becoming common nowadays. 

           All of the various sub modules have a dedicated thread  that “runs” and serves them using the pthreads 
framework. This threaded design is one of the great architectural strengths of GuarddoG since internally there is  
no IPC used , ( which would imply redundant memory copying ).  I/O operations overlap with CPU work ,  
memory  allocation  is  minimized  since  the  same  memory  blocks  get  shared  by  all  the  libraries  and 
synchronization overheads are also minimal. Of course in order to keep the design resistant to race conditions on  
memory access a simple “thread-safety” protocol is maintained since only RoboKernel , the delegation library , 
can decide when and where output from a library can be inputted in others , so these kinds of problems are  
centralized in a single library where it is easiest to face them by following the natural pipeline of data from the  
WebCameras to the motor controllers.

             Communication between External Interfaces ( GUI , CLI , HTTP Interface , Speech Recognition , GSM 
SMS etc ) is performed using a Unified string interface with high level commands such as Move Forward and  
others explained in more detail in the Unified String Interface section of  the Software topic. This also has  
proved to be a very “human” and economical in its implementation input system

             Next comes a process and thread creation diagram that can give a quick look on how the different  
libraries are organized internally.

*



The Process and Thread creation map 

* 



*AFTER

The project has been using git as a version tracking management system since late 2010 , so 2 of the first crucial 
years of  its development are missing from the history-tree. Using the tools at Ohloh.net on the git repository an 
interesting break down of the project can be extracted.

Language Lines Of Code Comments Comment R. Blank lines Total Lines

C 32,588 2,692 7.6% 5,091 40,371

C++ 14,067 4,316 23.5% 2,964 21,347

HTML 1,888 19 1.0% 81 1,988

Shell Script 1,432 203 12.4% 464 2,099

Ohloh.net also came up with figures about the development cost of such a platform using the Basic COCOMO 
model  with  coeffcients  a=2.4  and  b=105  which  is  approximately  $656,665  for  the  resulting  49,134  lines 
codebase. The projected estimation was 12 person-years which is 3 times larger than the time it took. All these 
data of course take into account the many years of development , the cumulative number of lines changed , etc.  
The figures are a little exaggerated but taken into account that half of the work done (before 2010) building this 
code was not commited it is an accurate estimation.

The code  development  tree  uses  git  as  a  version management  system.  The repository  is  hosted on 
github.com which offers on-line  web visualizations of the code and data while also featuring bug/issue tracking  
and a good platform for keeping programmers up to date with e-mails etc.

The project repository is https://github.com/AmmarkoV/RoboVision 

It can be cloned for read only usage from a remote computer issuing :

git clone https://AmmarkoV@github.com/AmmarkoV/RoboVision.git

 Project dependencies can be automatically downloaded on a debian ( apt-get ) based linux distribution by 
running ./apt-get-dependencies and the project can be compiled running the custom bash script ./make or by 
opening the workspace file using Code::Blocks IDE. 

The choice of an Open Source operating system was one of the most influential for the course of the project ,  
since it made development easier and removed many programming overheads. A good example of this is Text to 
Speech functionality. In a Windows operating system there are limitations according to the version of the system 
( and for no other apparent reason )  Windows XP can use the Microsoft Speech API but only up to version 5.1 ,  
Windows Vista can use it up to SAPI 5.3 and Windows 7 to SAPI 5.4. In a Linux OS ( ubuntu for example ) to  
make a program “speech-enabled” one can just issue “sudo apt-get install festival” to install the most up to date  
version of the libraries required for text to speech based on  work from the University of Edinburgh and then just 
issue “system(“echo “Hello World” | festival –tts”);” .

To make direct usage of the library in Windows one must install Microsoft Visual Studio , download 4GB+ of 
libraries and the Windows SDK just to get started. Linux is once again a lot easier. These kind of differences are  
usually quietly ignored , but since it is one of the important lessons learned through the GuarddoG development  
experience it must be stressed that development for scientific purposes comes naturally in conflict with the usage  
of closed source profit oriented tools , especially when the international programming community can offer such 
great alternatives such as Free and Open Source Software .

*

https://github.com/AmmarkoV/RoboVision


Working  with  images  means  processing  very  large  volumes  of  data.  The  limited  resources  of  the 
computer also mean that the data must be efficiently stored and transported from one library to the other to 
reduce the overheads of shifting large memory chunks from one place of the memory to another. To combat that  
and since input sizes don't change size the GuarddoG software tries to be “zero copy” by passing pointers to the 
data since they are stored on the program's heap and are available to all the different code modules. A good  
example of this is the camera input which comes at pairs of 320x240 RGB values at a frame rate of 120 frames  
per second or 2x225KB . V4L2 ( Video 4 Linux 2 ) and the Linux Kernel maps the memory where the frames are 
received into  the  executables  address  space ,  and  from there  on  the image  gets  processed  in  all  the  ways 
mentioned in the first part of this document without redundant memory copying  trying to conserve CPU cycles.

Parts  of  the  code  that  have  to  do  with  repetition  of  operations  on  to  the  incoming data  are  hand-
optimized  by  the  OpenCV implementation  using  SIMD (  Single  Instruction  Multiple  Data  )  calls  that  are 
supported by most of the Intel CPUs as well as recent ARM based CPUs such as the ARM11. Performance 
statistics  are  kept  using timers between all  major  calls  which can give a  very good glimpse of the overall  
performance of the robot and helped with identifying problematic parts of the code during the development . 

The project uses the following third party libraries.The code of GuarddoG ( RoboVision ) has a GPLv3 license.  
Since  the  layout  of  the  code  uses  its  own  model  most  of  them can  be  fairly  easily  removed by  different  
implementations of  possibly better performing libraries in the future.

Library Purpose License Dependency

OpenCV Feature/Face Detection BSD License +++

CMU-Sphinx Speech Recognition BSD License +

Festival Speech To Text MIT License +

wxWidgets GUI / Image Loading  LGPL +

libPNG Image Manipulation libPNG +

Gnu Scientific Library Mathematics GPL +

Portable Threads Threading system LGPL +++++

libUSB USB communication LGPL +++++

 GSM-Utils GSM communication - +

Apache Web Server Web Interface Apache +

OpenGL+FreeGLUT 3D Visualization - +++

GnuPlots Performance Visualization GPL +

* 



Software

 3.1.2  Libraries Outline

Video Input  ( libVideoInput.a )

Purpose : 

Image  Acquisition  from  USB  webcameras  using  V4L2.  Take  care  of  synchronization  issues  on  the  two 
cameras .. Recording/Playback of streams of input frames in order to create test suites that can be re-run without  
the actual hardware to emulate it for review / benchmarking without additional coding effort on the rest of the 
project. Future functionality may also include remote video streaming to include new deployment possibilities.

Key calls :  

int InitVideoInputs(int X); Initialize memory for accomodation of X  inputs ( x is 2 in guarddog )
int InitVideoFeed(int inpt,char * viddev,int width,int height,int bitdepth,char snapshots_on,struct 
VideoFeedSettings videosettings); Initialize video feed , this is called two times , one for /dev/video0 and one 
for /dev/video1 
unsigned int NewFrameAvailiable(int webcam_id); If this is set it means that a new frame is ready 
unsigned char * GetFrame(int webcam_id); returns a thread-safe pointer to input for camera X , cameras are 
typically 0 left and 1 right
unsigned int SignalFrameProcessed(int webcam_id); This must be called to signal that we are done with the 
GetFrame call and a new frame can take its place

External Dependencies : 
 
V4L2 , pthread , libPNG

Output : 

   2 raw RGB frames that can be sampled directly from the webcameras or from an older recording. The output is 
passed to Visual Cortex for processing

*



 

Visual Cortex  ( libVisualCortex.a )

Purpose : 

Visual Cortex's role in the project is self explanatory. It is the library responsible for deriving meaning 
from the  stream of  input  images.  Memory  is  organized  in  video  registers  which  are  structures  that  make 
programming more intuitive. These video registers are allocated in three sizes unsigned char , unsigned short and 
unsigned  int according to the depth of information needed for each of the operations. All of the operations in the 
library have to do ( more or less ) with transforming a video register and storing the result in the same or a  
different video register. Precise timers monitor performance on operations , and the way this library works can 
make  it  very  modular.  The  library  originally  contained  its  own HAAR Classifiers  ,  Corner  Detection  and 
Homography Estimation code segments but due to their inferior performance these were easily changed with the 
OpenCV calls to enhance the result. Disparity Mapping is also an example of this  flexibility since both the 
OpenCV and the  Hirschmuller  algorithm co-exist  and can be dynamically  changed as  the  default  Disparity 
Mapping technique.
 Performance statistics are automatically recorded and converted to live updated graphs using gnuplot ,  
and a large array of settings can be modified to tune the different aspects of each algorithm ( comparison window 
sizes , thresholds , heuristics etc ). Processing happens in three logical steps. The first involves the RoboKernel 
or   another  library  or  executable  calling   unsigned  int  VisCortX_NewFrame(unsigned  int 
input_img_regnum,unsigned int size_x,unsigned int size_y,unsigned int depth,unsigned char * rgbdata); to 
point the library to a new raw frame. If image resectioning is activated this frame gets converted to a resectioned 
equivalent and if not it is retained as it is and checked against the last frame of the webcam. If they are both “the  
same” or very similar the frame is marked as non-changing and subsequent operations are skipped since they  
will output the same results and are redundant.  When both of the frames are collected , the library is ready to  
receive requests to extract depth maps , faces , and other useful information from the image pair. By default in  
every frame processed corner  detection and homography estimation is  performed to keep accurate  position  
tracking without requiring external repeated commands to do so. Face Detection happens typically in one of the  
two frames ( depending on movement or “flow” detected on each of the images ) in order to cut by almost half  
its processing time and  depth mapping is performed only when the robot needs depth estimations since it is 
typically a large amount of CPU work. 

There is a lot of side functionality implemented as part of the library and performance has been taken  
seriously into account , utilizing summed area tables , pointer arithmetic , loop unrolling and other techniques to  
maximize  performance.  The  only  optimizations  not  implemented  were  SIMD (  Single  Instruction  Multiple 
Data )  operations on the Intel  chips since a planned migration to an ARM architecture will  take place and 
OpenCL/CUDA accelerated filters since the current graphics board of the robot does not support them. Speed 
could be dramatically increased ( 4x – 32x ) in some cases by using these technologies. Despite of the difficulties 
when implementing them the source code layout should provide a good framework to unobtrusively implement 
them with minimal cost to the rest of the design. 

*



Key calls :  

unsigned int VisCortx_Start(unsigned int res_x,unsigned int res_y); This is the initialization call for the 
library which sets up registers , precalculations and allocates state variables according to the image resolution.  
unsigned int VisCortx_Stop(); This is the closing call for the library
unsigned int VisCortx_SetCamerasGeometry(float distance_between_cameras,float 
diagonal_field_of_view,float horizontal_field_of_view,float vertical_field_of_view); This call sets some 
camera information based on the manufacturer specifications.
void VisCortx_CameraParameters(int right_cam,double fx,double fy,double cx,double cy,double 
k1,double k2,double p1,double p2,double k3); This call sets camera information based on calibration for the 
specific cameras onboard the robot ( Since every camera has a unique assembly with slight differences ).
unsigned int VisCortX_NewFrame(unsigned int input_img_regnum,unsigned int size_x,unsigned int 
size_y,unsigned int depth,unsigned char * rgbdata); This call passes the frames received by VideoInput into 
the library.
void ExecutePipeline(); Signals that both images have been passed and that processing may commence.
void  VisCortx_FullDepthMap(unsigned int max_milliseconds); This call starts depth mapping with a 
timeout value for blocking the thread that called the depth mapping
unsigned char * VisCortx_ReadFromVideoRegister(unsigned int reg_num,unsigned int size_x,unsigned 
int size_y,unsigned int depth); This returns a pointer to a video Register , i.e. the depth map register.
unsigned int VisCortx_RecognizeFaces(unsigned int cam);   Extracts a list of faces.
unsigned int  VisCortx_GetFaces(unsigned int vid_reg,unsigned int point_num,unsigned int data_type); 
Gets a list of face coordinates
int UpdateCameraPose(unsigned int reg_num) automatically updates position values on MasterWorld 
( another library ) so it is not called externally 

External Dependencies : 
 
OpenCV , GSL , libFAST , gnuplot

Output : 

   A list of faces detected on each of the input images , a depth map “3d point cloud” using information extracted  
by means of disparity mapping , a list of feature or salient points , and an array containing the elements of the 
transformation that took place between the current and the last pair of frames 

*



World Mapping
MasterPathPlanning ( libMasterPathPlanning.a )

MasterWorld ( libMasterWorld.a )

Purpose : 

Mapping services , position tracking , path planning , SLAM , obstacle avoidance and general movement 
planning.  The  functionality  is  split  in  two  libraries  one  called  MasterPathPlanning  which  offers  a  two 
dimensional world abstraction , along with scale information and an agent abstraction in order to be able to 
represent moving persons ( faces ) detected and receive high level commands such as “plan a route to person  X”  
or location names for commands like “plan a route to kitchen room”. PathPlanning also gets notified of changes 
on the position of the robot through MasterWorld that may produce a new path plan towards the target .

None of the two libraries actually executes movement , path planning plans a route and master world 
transfers to and from the planning logical module to the Hardware Abstraction Layer (HAL) presented next. 
MasterWorld does not yet perform internal SLAM ( only dead reckoning ) but the functionality will have to be 
appended later.  

Key calls :  

struct Map * CreateMap(unsigned int world_size_x,unsigned int world_size_y,unsigned int 
actors_number);
struct Map * LoadMap(char * filename) ;
int SaveMap(struct Map * themap) ;
int SetMapUnit_In_cm(struct Map * themap,unsigned int cm_per_unit) ;
int ObstacleExists(struct Map * themap,unsigned int x,unsigned int y) ;
int ObstacleRadiousExists(struct Map * themap,unsigned int x,unsigned int y);
int SetObstacle(struct Map * themap,unsigned int x,unsigned int y,unsigned int safety_radious);
int RemoveObstacle(struct Map * themap,unsigned int x,unsigned int y,unsigned int safety_radious);
int SetAgentHeading(struct Map * themap,unsigned int agentnum,float heading) ;
int SetAgentLocation(struct Map * themap,unsigned int agentnum,unsigned int x,unsigned int y) ;
int SetAgentTargetLocation(struct Map * themap,unsigned int agentnum,unsigned int x,unsigned int y) ;
int MoveAgentForward(struct Map * themap,unsigned int agent,float leftwheel_cm,float rightwheel_cm) ; 
int AddObstacleViewedbyAgent(struct Map * themap,unsigned int agent,float horizontal_angle,float 
vertical_angle,float distance_in_cm);
int FindPath(struct Map * themap,unsigned int agentnum,unsigned int timeout_ms) ;
int ExtractRouteToLogo(struct Map * themap,struct Path * thepath,char * filename) ;
int ExtractMaptoHTML(struct Map * themap,char * filename,unsigned int map_size);
int GetRoutePoints(struct Map * themap,struct Path * thepath) ;
int GetRouteWaypoint(struct Map * themap,unsigned int agent,unsigned int num,unsigned int 
*x,unsigned int *y) ;
int GetStraightRouteWaypoint(struct Map * themap,unsigned int agentnum,unsigned int count,unsigned 
int *x,unsigned int *y);

Output : 

These 2 libraries provide access to a virtual environment when according to the robot sense of depth  
acceleration , movement etc a virtual “simulation” can be run and re run that can produce a list of commands that  
in turn  will drive the robot towards its objectives.    
*



 

Motor Foundation
MotorHAL ( libMotorHAL.a )

Arduino (libRoboVisionSensorLib.a)

MD23 (libMD23.a)

Purpose : 

An abstraction layer that can maximize code reuse , despite the constant changes in GuarddoG hardware. 
Historically this consisted only of a Mindstorm Library which was later replaced by an MD23 and recently an  
additional arduino for ultrasonic sensors , accelerometers and other low level peripherals. These can be changed 
without impacting the rest of the codebase with substantially less effort and upkeep cost. 

Key calls :  

unsigned int RobotInit(char * md23_device_id,char * arduino_device_id);
unsigned int RobotClose(); 
void RobotWait(unsigned int msecs); 
unsigned int RobotMoveJoystick(signed int joy_x,signed int joy_y);
unsigned int RobotRotate(unsigned char power,signed int degrees);
unsigned int RobotStartRotating(unsigned char power,signed int direction);
unsigned int RobotSetHeadNod(char * pose_string);
unsigned int RobotSetHeadPose(unsigned int heading,unsigned int pitch);
unsigned int RobotGetHeadPose(unsigned int * heading,unsigned int * pitch);
unsigned int RobotMove(unsigned char power,signed int distance);
unsigned int RobotStartMoving(unsigned char power,signed int direction);
unsigned int RobotManoeuvresPending();
void RobotStopMovement();

int RobotGetUltrasonic(unsigned int which_one);
int RobotGetAccelerometerX();
int RobotGetAccelerometerY();
int RobotSetLightsState(unsigned int light_num,unsigned int light_state);
int RobotIRTransmit(char * code,unsigned int code_size);

External Dependencies : 
 
libUSB , pthreads

Output : 

The  MotorHAL  library  and  the  2  sub  libraries  that  communicate  with  the  motors  and  arduino 
periphericals are the gateway of the software to the real world.
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 RoboKernel  ( libRoboKernel.a )

Purpose : 

This is the core program daemon linked to from each of the the executables of GuarddoG. Its job is to start all of 
the Input interfaces ( IRC , GSM , Joystick , Scripts , Web Interface ) and sub libraries and pass data between  
modules.  Executables  use  the  IssueCommand to  operate  it  and  retrieve  state  information  directly  from the 
submodules. 

Key calls :  

int IssueCommand(char * cmd,char * res,unsigned int resmaxsize,char * from);

unsigned char * GetVideoRegister(unsigned int num);
unsigned int GetCortexSetting(unsigned int option);
void SetCortexSetting(unsigned int option,unsigned int value);
unsigned int GetCortexMetric(unsigned int option);

int StartRoboKernel();
int StopRoboKernel();
int CheckThatRoboKernelStopped();

int RoboKernelAlive();

struct Map * GetWorldHandler();

External Dependencies : 
 
pthread 

Output : 

     Robot functionality   

Some of the smaller or incomplete libraries part of the project  : 

They are not analyzed for brevity
Auditory Input , Input Parser , IrcInterface ,RVKnowledge Base

*



Software

 3.1.3  Unified String Interface 

In the process of reducing the surface area for the different libraries and their in between communication 
,  a  mini  scripting  high-level  language  was  developed  (  for  now it  only  features  functional  usability  ,  no 
arithmetic operations , loops or other operators ). This language serves as a layer between the different libraries  
to make debugging easier and make the code more easily portable as parts of the design changed. For instance 
joystick input was in the beginning handled using the Win32API , later on the design its code was replaced with 
a wxWidgets wxJoystick implementation and finally by  linux specific code which utilized directly the device  
file  /dev/input/js0  .  During  all  the  transitions  joystick  events  were  passed  using  JOYSTICK 
INPUT(x_axis,y_axis). What is more , a user can in fact use his cell phone  to send an SMS to the robot GSM  
stick JOYSTICK INPUT(x_axis,y_axis) or using an IRC relay , or via the web interface and command the robot  
just as he would in a local setup. This also makes the Executable program very agile and the computational  
overhead is  minuscule  compared  to  the  benefits  of  this  design.  Adding a  working  knowledge  base  to  this 
interface  will  make the  robot  much more “intelligent”  since all  inputs  will  share  a  common language  and 
complex queries using forward chain reasoning and other techniques. On an even more advanced level direct  
object transformation into strings , without explicit orders from the robot's owner will make it more human-like 
and intelligent although on a much lower level than human intelligence. 

Command Details Command Details

DANGER Signal Alarm AUTO CALIBRATE Dynamic camera calibration 

SAFE Stop Alarm Function DEPTH MAP Perform depth map

MOTION ALARM Signal Alarm on Motion HEAD POSE Change the pose of the head 

PANORAMIC Take a panoramic image set SET LIGHT Activate / Deactivate lights

SWAP FEEDS Swap Camera Inputs ( L/R ) GOTO Move to new position

WEB INTERFACE Enable/Disable Web Interface FORWARD Move Forward

DRAW MOVEMENT Highlight movement on frame BACKWARD Move Backward

DRAW FEATURES Highlight Corners on  frame LEFT Rotate Left

DRAW CALIBRATED Draw Calibrated input frames RIGHT Rotate Right

FIND FEATURES Find Features on input frames TOGGLE AUTO RECORD 
SNAPSHOTS

CLEAR FEATURES Clear current feature list TOGGLE AUTO 
PLAYBACK SNAPSHOTS

PLAYSOUND Plays a wav/ogg/etc file RECORD SNAPSHOT Record images



Command Details Command Details

RECORDSOUND Record an wav file RECORD COMPRESSED Record images

STOP SOUNDS Kill all prcesses playing sounds PLAYBACK SNAPSHOT Playback images

SAY Text To Speech echo string PLAYBACK LIVE Revert to live stream

DEPTH MAP TO FILE Save Depth map to file SENSORS Retrieve Sensor Value

REFRESH MAP Refresh map with new points SCRIPT Run Script

DEPTH MAP IMPORT 
TO MAP

Refresh map with new points STOP SCRIPT Stop Script

SOBEL DERIVATIVE Apply Sobel Convolution filter HYPERVISOR STATISTICS Retrieve Statistics

CONVOLUTION FILTER Apply Convolution filter TELL Tell string to KB

FACE DETECTION Detects Faces on input frames ASK Ask string from KB 

REMEMBER IMAGE Remember current image part SEARCH Search KB

IDENTIFY IMAGE Identify current image part JOYSTICK INPUT Simulate Joystick Movement

DELAY Delay next command FUNDAMENTAL MATRIX Calculate fundamental mat.

AUTONOMOUS MODE Start Autonomous mode - -

Communication Interfaces
Available that were Unified

GUI

CLI

External call to guarddog script

Web interface 

IRC interface

GSM SMS Interface

Speech Interface via CMU-Sphinx
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Future Work 

 4.1.1  A list of future additions , improvements and ideas

 

   - CAD designed body 
A CAD designed body has already beendesigned and it is awaiting the laser cutting procedure. It will  

resolve many of the problems of the hand-assembled body of GuarddoG that is one of its biggest defects , since 
it is not sturdy and impedes on its whole mission in a variety of ways.  
    - Low Level Assembly ( MMX/SSE3 ) optimizations 

SIMD (single instruction multiple data ) processor calls are very efficient in terms of making the most  
out of the hardware used for large scale computational procedures. Unfortunately the source code implemented  
as parts  of  VisualCortex and the other libraries does  not  include inlined MMX/SSE3 optimizations  but  the 
temporary use of OpenCV for this functionality.      
   - OpenCL / CUDA / VLSI acceleration

At the same line of improvements as low level  assembly ,  hardware acceleration using OpenCL or 
CUDA GPU acceleration can dramatically improve performance on linear algebra calculus which is the main 
type of  computations  performed.  This  hardware is  not  yet  part  of  GuarddoG due to  the  high cost  and the 
additional  power  consumption factor  which prohibited its  use.  A VLSI dedicated implemenetation of  some 
algorithms could also be beneficial to the project but mass production OpenCL enabled GPUs will most likely be  
the best hardware selection. 
     - Network Connectivity – A Centralized Robot Patrol Registry Service  

Supposing someone using GuarddoG to  guard their office , one logical failure scenario is a perpetrator 
permanently disabling the robot by instant physical destruction using a weapon. In this case the robot will not be  
able to react or use its various modes of communication to report the inciedent. To avoid these kinds of problems  
commercial “patrol service registries” could assume the role of receiving reports from registered robots at a user  
chosen interval ( i.e. 5 minutes ) . That way if a robot fails to report for at least 10 minutes appropriate action  
will be taken to notify the owner of the unexpected communication failure so that he may take the appropriate 
steps needed.       
     - Network Connectivity – Encryption over RF

Although GuarddoG currently has a very extensive list of options for network connectivity , and GSM /  
GPRS / 3G functionality given the coverage available seems to suffice , using amateur radio frequencies that 
provide great range on low frequencies could act as a “wide-area” silent alarm system for fail safe emergency 
transmissions.  Neighboring  robots  monitoring  the  channel  could  automatically  utilize  their  own  internet 
connectivity access to forward messages or warn their owners of the local threat “in their neighborhood” . A  
local  organization  of  the  “registry  service”  could  also  apply  with  neigboring  robots  talking  to  each  other  
regularly to achieve the same functionality.
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    - Speech Recognition 
 Speech recognition  capabilities  have  already been tried  in  GuarddoG .  Early  versions  utilized  the 

Microsoft SAPI with a small grammar configuration that enabled users to operate the robot using natural speech.  
After the transition to Linux the CMU Sphinx project was used as a step-in replacement for the library but  
despite its overall better performance it was never fully incorporated in the new library functionalities and later  
dropped completely as a feature since it was out of the scope of the project goal.  
    - NLP – AI Knowledge Base

Again as stated before in this text the string interface implemented is not versatile enough for intelligent  
robot behavior. A NLP engine with a knowledge base coupled to the visual cues on the robot world would  
certainly be a big missing link in a system that will transforming from a mindless appliance to a useful assistant. 
This  is  currently  happening  in  mobile  devices  with  Iphone's  SIRI  (Speech  Interpretation  and  Recognition 
Interface)  as  a  succesful  example.  Search  engines  and  knowledge  engines  such  as  Wolfram Alpha  ,  MIT 
OpenMind could be a great framework for this kind of functionality.   
    - Image / Face / Object Recognition

As a part of the GuarddoG work a face detection algorithm ( HAAR Cascades ) is used to extract a list of  
faces. The detected faces however are not mapped to a specific person so the robot knows that it sees a face but  
not whose face it is , a disability that occurs even in humans commonly known as Prosopagnosia. A proper  
implementation should also create a database of known faces and after this step functionality could broaden to  
include  Object  Detection  and  Recognition  that  will  also  greatly  improve  the  SLAM  that  can  leverage  
information about surrounding objects to better estimate the robot location.  
   - 3D Physics Simulation using ODE ( Open Dynamic Engine )

Simple  scene  recognition  could  be  improved  using  a  Physics  engine  leading  to  better  scene  and 
movement understanding.  Various Open Source physics engines such as ODE have been used in robot projects ( 
particularly implementations with articulated robot bodies ) to estimate pose , stability and practical movement 
problems.
   - Commercial Personal Robots

Even with a perfect implementation on all technical aspects mentioned above , creating a marketable 
commercial product poses an altogether different endeavor that will make it a suitable appliance. Successful 
appliances  long  ago  entering  our  households  include  the  washing  machine  ,  the  refrigerator  ,  the  mobile  
telephone and other practical machines that humans use to satisfy their daily needs and solve their problems .  
Robots will not be different and it will take a lot of time to become widely adopted , at the same time creating 
controversies such as many new techonlogies have done in the past [51] .  
  - Car sized guarddog or “CardoG”

 Another implementation of the same algorithms used in this project is driving a real automobile in the  
city streets. Car manufacturers in the past century have done a great job gradually providing all the framework 
needed for electrical power , steering , maintenance and passive safety so that leaves  work adapting the controls 
to the car infrastructure in a portable low budget way and more low level data gathered by LIDAR , high  
precision GPS receivers , IMUs and  high framerate cameras to help the algorithms do a better job. A recent 
DARPA Grand Challenge in the US ( 2005 ) as well as the Grand Cooperative Drive Challenge in the EU and an 
autonomous car designed by Google has shown that the technology is mature enough. The question is precision  
and cost , and smart software plays a crucial part on both of the success factors so it is an area that is worthwhile 
exploring. 
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Conclusion

Results and Conclusions

 

In  this  text  the  complete  anatomy of  a  small-scale  autonomous  moving  robot  was  presented  in  a  
theoretical as well as a practical level. One of the novel aspects of the work done was a new implementation  
using  a  traditional  disparity  mapping  approach  accelerated  in  a  substantial  way  using  integral  images  for  
comparing image patches.  The other result of the effort is a high performance software stack for autonomous  
robots and an implementation test bed for it , the GuarddoG robot.  

As far as the original project goal  “to build a robotics platform that can act as a guard , traverse a  
known path and fend off intruders. In case of a security breach it would signal the alarm and begin to follow the  
perpetrator and after a set distance would resume its previous path.” , unfortunately the physical build does not 
rise up to the original  expectation and sadly the reason largely responsible is  not software or mathematical  
oversights but a mediocre hardware implementation. Although this was apparent early on in the procedure ( back  
when the plan of implementation was naively the Mindstorm kit ) due to the large cost and non-existing budget 
support for the project , which was entirely covered with own funds , the current physical implementation is  
plagued by small problems which I hope to overcome in the future using laser-cut materials and better hardware 
since the electronics on board the robot are now 4 years old .  

Despite the shortcomings , it is clear to me know that the project goal is definitely achievable with  
current  day  technology  but  a  high  quality  end  implementation  is  still  not  cheap  enough  for  commercial  
implementation. It is only a matter of time though , for the critical mass of technologies and science disciplines  
to streamline even more of the different building blocks. Perhaps the largest and most costly problem for a  
moving robot and by extension any moving electronic device with large power consumption is a robust power  
supply system , and I estimate that breakthroughs in energy storage and computer power consumption would be 
key factors for the robots of the future.  
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Epilogue

Photo Album
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Epilogue

The end

Hansei (反省 , "self-reflection") is a central idea in Japanese culture. Its meaning is to acknowledge your own  
mistake and to pledge improvement. This is similar to the German proverb Selbsterkenntnis ist der erste Schritt  
zur Besserung where the closest translation would be "Self-awareness is the first step to improvement".

From Wikipedia

Building GuarddoG has been an arduous process of planning , experimenting , exploring different scientific and 
technical domains , failing and then trying again. Autodidactism and reinventing the wheel has been common 
through the 4 years course of the project that has led to a deeper understanding of the problems and development 
process of such large scale endeavors.  Perhaps the overambitious surface of the project was its pitfall proving  
too much of a workload for a single developer , and perhaps if more of the implementation was used with ready-
made libraries from the start its timeline would have been much shorter. However arriving at a result by merely  
observing it and arriving at the same result after reaching a deep understanding of all the mechanisms governing 
“the truth” you were seeking are two very different things.  Surface knowledge can never be compared and so  
despite the great amount of time sacrificed , GuarddoG has been a wonderful experience , a big part of my life  
and certainly the most interesting thing I have set my mind to accomplish so far. I am certain that in the decades  
to come a great revolution will be widely available domestic robots that will free humanity from the boring tasks  
of everyday life , and I hope to live long enough to see the day when this dream will come true. As for this text I  
hope the way with which I presented the various topics will give a clear concise and comprehensive guide for a  
reader seeking to start his journey , seeking the same goals as I did.   
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