
 ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS
 DEPARTMENT OF INFORMATICS

Author : Ammar Qammaz
Supervisor : Georgios Papaioannou

Athens , April 2012

*

Introduction and motivation 03
Goal 04
1 Mathematical Framework

1.1 Camera Pinhole Model 09

1.2 Camera Calibration 11

1.3 Image Rectification 15

2.1 Image Processing 17

2.2 Corner and Feature Detection 21

2.3 Template Matching and Integral Images 24

2.4 HAAR Wavelet based Face Detection 27

3.1 Epipolar Geometry 29

3.2 Binocular Disparity Depth Mapping on a parallel camera setup 31

4.1 Homography Estimation 40

4.2 RANSAC 42

4.3 Optical Flow 44

5.1 Dead Reckoning 47

5.2 Simultaneous localization and mapping 49

5.3 A* Pathfinding 51

6.1 First Order Logic and a Wumpus like World 55

6.2 The big picture 56

2 Hardware
1.1 Overview 59

1.2 Camera Sensors and Synchronization issues 62

1.3 Motor System and Peripherals 64

2.1 The Energy – Weight - Heat – Cost Problem 66

2.2 GuarddoG Part list / Specifications 69

3 Software Stack
3.1 Overview 70

3.2 Process and Thread Creation Map 75

Library Outline – Video Input 75

Library Outline – Visual Cortex 76

Library Outline – World Mapping 78

Library Outline – Motor Foundation 79

Library Outline – RoboKernel 80

3.3 Unified String Interface 81

4 Future Work
1.1 Future Work 83

5 Conclusion
Conclusion 85

Photo Album 86

Epilogue 87

Bibliography/References 88

START

Introduction and motivation

A few opening remarks

 Humans increased their physical power during the industrial revolution using machines. They were able
to create giant dams , factories , cars , airplanes and skyscrapers to make their everyday life easier . Technology
has continued to improve exponentially and in the current age , labeled by some as the age of informatics or the
internet , mental capabilities where multiplied. Merging the following two revolutions we can finally partly
replace ourselves from dull and repetitive tasks of day to day life that will gradually stop to trouble mankind
leading to a more pleasant life. The GuarddoG project is about making machines that can see and act as a
futuristic private guard .

The process of creating an autonomous robot that can perceive its environment and react and interact
with it took nature millions of years. From the first bacteria to multi cell organisms , the wolf then the dog and
the human , enormous evolutionary differences created beings of immense complexity and perfection. For
someone to study , understand and then build something that took such a great amount of time in even a quarter
of a lifetime is over-ambitious. An observation that is thought provoking is that while humans have been
surpassed by computers in complex decision making procedures such as chess playing or tactic games with a
limited set of rules , in contrast humans have an extraordinary innate superiority on simple tasks such as
perceiving space , time , and “natural logic” a result of the millions years of natural selection with these
characteristics as a basis.

That being said GuarddoG does not attempt to create a dog (with everything a dog implies) , because
this is practically impossible. Its goal is replacing a specific function of a dog as a guardian. I am very optimistic
that with time robots will eventually be improved enough to be able to perform a multitude of tasks approaching
something that will surely be different than a real dog , better at some things , and worse at some others.

Even though the future will offer even more tools , even now thanks to the marvelous technology and
work of all the scientists , mathematicians , physicists , chemists , engineers and computer scientists (we are
literally standing on the shoulders of giants) I was able to construct something very close to my original target ,
spending a fraction of the money and time that would be required before 15 or even 10 years.

 A better way for someone to visualize the small subset of functionality that is attempted by computer
vision algorithms and in this case GuarddoG , is to compare it to the holy grail of cognition and intelligence , the
human brain. Though computers for many years have managed to surpass human experts on tasks like playing
chess , remembering sequences of numbers , performing arithmetic calculations on large data sets and recently
even guessing questions to answers (IBM Watson on the Jeopardy TV Show) , things that everyone can do
without even thinking about , like walking , identifying 3D objects and faces , and coordinating his head , eye
and body movement are currently unachievable by machines at least to the extent of human performance .

 This is a good indicator of the level of optimization that has taken place through the millions of years of
evolution , because there is no doubt that if playing chess was a trait that leaded to natural selection the human
brain would be totally different and have a much greater affinity towards these kind of activities. On the other
hand , if breathing , beating the heart or walking and identifying objects wasn't crucial for the survival of the
human species , to master these kind of activities could may well be as difficult and time consuming to be
achieved as mastering chess .*

Project Goal

The goal of the “Guard Dog” Project

The goal of the Guard Dog Project is to build a robotics platform that can act as a guard , traverse a
known path and fend off intruders. In case of a security breach it would signal the alarm and begin to follow the
perpetrator and after a set distance would resume its previous path.

The goal of this document is to give a clear and concise look of the algorithms , methods and building
blocks that should be employed to achieve this. Needless to say it was a very challenging effort discovering
these first hand during development , and compiling them in this document in a coherent form of reasonable
proportions is also proving to be very difficult. For many of the things that are mentioned in a paragraph or a
page , one could go on writing hundreds of pages or even books to fully justify and explain them , and indeed
hundreds and thousands of pages have been written for them. Wherever needed , the provided references will
help the reader better understand the concepts or study them in more detail. In addition to these references the
first bibliography entries are related books that can be of great aid to the reader.

Robotics and computer vision are not a new domain of computer science and electrical engineering. It
was especially shocking for me to see video footage of experiments in the AI Lab of Stanford (for example Les
earnest and Lou paul and the Rancho Arm) circa 1971 that perform object detection , complex decision making
and that actually use more or less the same algorithms as current robotics projects do. The major difference is not
so much about the methods used , but the exponential improvement on computer hardware , popularly coined as
Moore`s Law.

We are living in times where many high-end mobile phones actually have more complex processors than
the satellites of the first mission to the moon and that experiments such as those that required equipment that cost
millions of dollars in 1971 and could only be done in universities or government research centers can be
reproduced with consumer electronics readily available everywhere. Unfortunately the consistent computation of
the world around a robot is still a very difficult and expensive task with a generic CPU and no specialized
hardware , but yet it seems almost feasible when you achieve even something that can work 10 times slower than
a human.

Of course an additional goal of the project is to perform guard duties using only cheap building blocks
but not passive sensors as most commercially available security systems do. Instead building a semi-intelligent
agent that can do this job the way humans would do it. It is an exploration of the possibilities and limits of
current technologies along with software that can leverage the capabilities of computer hardware in an efficient
way, to achieve it.

It is also interesting to note that the same computer vision libraries , could in principle and with some
necessary adjustments be fitted for tasks like driving cars in city streets , helping blind people find their way or
any task that involves using optical information of ones surroundings to achieve a related goal. The main
difference would be the risk/cost and risk/performance ratio since a computer driving a car at full speed can be a
much worse hazard when compared to a small robot bumping on a wall.

*

Overview

 An outline of this text to help the reader

The ease with which humans sense the world makes the problem of computer vision seem “easy” to
solve. In fact the way we see is so natural and persistent that even scientists in the field made biased over-
optimistic predictions about it. The fact is that despite the exponential growth in computational speed , and
although there is a very big market that could certainly use vision algorithms to automate tasks , there is still no
defacto algorithm that can compare to what human vision performs. Moreover from simple reflexes as
maintaining focus and coordinating ones gaze , reading text , to tracking your position in an unknown city ,
vision seems to be “AI-Complete” , since understanding and combining what is seen is an altogether different
task than the small building blocks which are presented here.
 A robot that can see and interact with the world , is basically a Turing machine on wheels. Therefore the
whole model presented here is an adaptation of different mathematical concepts and a fusion of them together.
The strip of tape in this Turing machine is constantly filled with symbols of light intensity as the light gets
reflected and activates the camera sensor elements. When the control algorithm decides that the robot has to
move it writes it to the according tape elements and the motors move , producing a new view of the world.

 The vision algorithms act like a “reverse-graphics card” since they are employed to generate a three dimensional
array of vectors and points using their projection on a 2D plane as input. 3D graphics card operate to the exact
opposite end since they are used to render 3D data on a 2D surcace (i.e. computer monitor) .

*

The first thing to take into consideration beginning to approach this problem , is how the physical world
is being represented by the cameras. They are , after all , the means with which the GuarddoG/RoboVision
algorithm collection , a “meta”physical entity can take a peek into reality. The data acquired must be filtered to
remove deformations and distortions that may corrupt the whole process. These steps are described in the
Camera Model , Camera Calibration and Image Rectification parts of this document. Once two corresponding
images of the projection of the world on the camera sensors are acquired , they are examined for optical cues that
reveal the details of the world in three dimensions and also the robot's position. This is also discussed
extensively , and the Disparity Mapping algorithm used by GuarddoG is a noteworthy and novel implementation
on traditional disparity mapping using integral images to substantially speed up the process. When all these steps
are finished , the next one is tracking the position of the robot (LK Optical Flow , RANSAC Homography) and
the combination of the successive 3d Views together (SLAM , Obstacle Detection).

The final piece of the algorithm is a knowledge base that sets its goals and keep the state of the world , steering
the robot towards achieving them. For GuarddoG , its goal is the traversal of a standard path , and raising the
alarm if a breach is found.

Beginning to make a system that sees , one can make many choices about the way with which to gather
input. As nature teaches us , and by bringing to mind various insects and animals that have been optimized
through a process of millions of years to see one might use anything from ultrasonic sounds , to the million small
eyes of insects up to human stereoscopy. With the world represented through the camera being so chaotic , and
as this project does not deal with a fixed environment in which to be operated , while also having economic
restrictions applied , the best choice was a human like stereoscopic camera input. It is true that commercial
RGB+depth cameras such as Microsoft Kinect can bypass a very big portion of the computational complexity of
this project , but they still have their own drawbacks. The stereoscopic setup wasn't chosen by accident by nature
, and the nature of a robot that uses stereoscopic vision makes it closer to the human experience as a mode of
viewing the world.

*

Illustration 1: The chicken and egg problem nature of an autonomous robot ,
that with its action changes its perception of the world , and with the changing
perception of the world it changes its action..!

Trying to approach the upper bound computational limit of a dense stereoscopic method for two frames
sized 320x240 pixels , in order for a full search from an image patch sized 40x40 pixels on the left eye to all the
possible matching patches along the epipolar line on the right eye , we have to make 320 x 320 x 240 / 40 =
24576000 /40 = 614400 operations in the worst case each time we get a depth map. In order to achieve a
“human like” response time from the vision system this has to be done at a rate of 25 frames per second , or a
maximum delay of 40 milliseconds per scan..
The number of operations per second increases exponentially as the image size becomes larger

 SIZE IMAGE RESOLUTION OPERATIONS OPERATIONS PER ms

QVGA 320 x 320 x 240 / 40 24,576,000 614,400 operations / ms

VGA 640 x 640 x 480 / 40 196,608,000 4,915,200 operations / ms

XGA 1024 x 1024 x 768 / 40 805,306,368 20,132,659 operations / ms

... Other Configurations

WUXGA 1920 x 1920 x 1024 / 40 3,774,873,600 94,371,840 operations / ms

This exponential increase , of course , impacts all the algorithms used on the project , and for every
operation there are numerous sub operations implied so the total maximum number of operations ends up being
many times larger than the numbers on this table. All the algorithms on the other hand do a much better job than
this worst case scenario , and specifically the disparity mapping algorithm of GuarddoG , which is one of its
novel aspects and is briefly presented in this text . To reduce the number of operations by design , and as an early
measure to compensate for the cheap hardware that is used by the on-board computer the resolution of images
used by default is QVGA (320x240 pixels) .

*

Illustration 2: What computers see

Illustration 3: CCD sensor

Manufacturing a physical stereo rig for the experiments which is perfectly aligned has a crucial effect on
the calculations. Not only it increases computational efficiency and reduces errors but it also removes
mathematical ambiguity about instances of the world that can be interpreted in many ways.. The relative position
of the GuarddoG cameras is supposed to be constant and the two cameras always have a coplanar alignment with
a fixed distance between the optical centers. The cameras are also never allowed to change their focus (nor
could change it as they do not have an automatic focus control).

To avoid re calculations and use of the CPU for reasons avoidable by better designed algorithms or a
smarter implementation , the whole vision library uses a pipelined architecture , so that the same image will not
have to pass a processing stage twice once it enters and according to the needs of the Robot Hypervisor the
different stages try to be combined , or operations stay pending for the next frame.

The pipeline itself , a term that is frequently mentioned in this document , is an abstract term meaning
the whole library collection and the final program which when executed receives input from the cameras ,
channels it and processes it and then using the motor system steers the whole platform to achieve the set goal .

The purpose of this document is to describe and analyze this pipeline and it is organized in five parts ,
each of which is dedicated to a certain aspect of it. The first stage is to analyze the mathematical background of
the algorithms , why they were chosen and why they should in theory work discussing performance issues from
a complexity viewpoint .

The second part focuses on hardware and technical details , along with performance statistics for
different hardware setups. The third one explains the various tactics followed writing the software and how
everything fits together on the resulting software stack. Part four discusses about the system in practice , its
performance and limitations on actual deployment , and the fifth and the last chapter for future plans for an even
better implementation and self-reflection about the project.

*

Illustration 4: The fixed parallel camera rig , that
GuarddoG uses

Mathematical Framework

 1.1 Camera Pinhole Model

A pinhole camera is a light capturing device without lens and a very small aperture. Regardless of the
imaging sensor , the shutter system , or the integrated circuit on camera , it is fundamental to understand the
physical model and how light gets projected on the sensor , in order to start to reverse engineer the physical
process that creates the data we must later process.

The smaller the hole of the camera aperture , the less light rays pass through it and the sharper the image
gets , but as the hole size decreases , so does the total number of photons that pass through it, resulting in a
dimmed image for short exposures. Regardless of the number of picture elements or the mechanism that captures
the light the most fundamental laws that govern vision are mathematics and in our case Euclidean geometry.

 Of course besides mathematics , optics and physics explain other implied principles such as why light
propagates in a straight line the way it does , why objects radiate a specific electromagnetic spectrum frequency
and other interesting details that govern the procedure. Since a domestic robot will not encounter gravitational
lens , refractions due to heat or liquids these are details that can safely be omitted .

 However a light bending phenomenon , although far less exotic than the previous stated ,does indeed
impact the procedure. Due to manufacturing inefficiencies in the shape and substance of the camera lens , the
projection on the camera sensor gets distorted. The distortion , depending on the quality of the methods
employed by the factory that makes the camera can be so great that the generated image may become unusable
without additional processing. This problem is discussed in the calibration and re sectioning part of this
document (the next topic) , that aims to measure and repair the distorted image making it fit to the ideal
pinhole camera model described here.

The pinhole camera model applies to most consumer grade web cameras and it is a very useful tool both
for this usage scenario as well as for understanding more complex camera topics such as zoom lens focus
changing and many others

*

The point O is where the camera aperture is located , and the start of the axes. The three axes of the
coordinate system are referred to as X1, X2 and X3. Axis X3 points in the viewing direction of the camera and is
referred to as the optical axis, principal axis, or principal ray. The 3D plane which intersects with axes X1 and
X2 is the front side of the camera, or principal plane.

The reflected rays from the world end up on the image plane , a two dimensional plane which is parallel
to axes X1 and X2 and is located at distance f from the origin O in the negative direction of the X3 axis. A
practical implementation of a pinhole camera implies that the image plane is located such that it intersects the
X3 axis at coordinate -f where f > 0. f is also referred to as the focal length of the pinhole camera.

A point R at the intersection of the optical axis and the image plane is referred to as the principal point
or image center. A point P somewhere in the world at coordinate (x1,x2,x3) relative to the axes X1,X2,X3 is the
projection line of point P into the camera. This is the green line which passes through point P and the point O.
The projection of point P onto the image plane, denoted Q. This point is given by the intersection of the
projection line (green) and the image plane. In any practical situation we can assume that x3 > 0 which means
that the intersection point is well defined.

There is also a 2D coordinate system in the image plane, with origin at R and with axes Y1 and Y2 which are
parallel to X1 and X2, respectively. The coordinates of point Q relative to this coordinate system is (y1,y2).

*

Illustration 5: The pinhole camera model , illustration from Wikipedia , public domain

The geometry of the pinhole camera viewed from the side , and on two dimensions. The calculations
performed are based on similar triangles that are created with the point O as their intersection.

 The mathematical equations that condense are the following :

−y1

f
=

x1

x3

∨ y1=− f
x1

x3

−y2

f
=

x2

x3

∨ y2=− f
x2

x3

(y1 y 2)=
− f
x3

(x1 x2)

These equations may seem elementary , and this is only logical since they have been a part of the human
knowledge domain around for at least 2500 years (they can be directly derived from the Pythagorean theorem
circa 500BC) but they are the first fundamental “laws” that govern the scene geometry when the 3D space is
dissected to 2D planes.

*

Illustration 6: The pinhole camera model , viewed from the side (from the X2
axis) , illustration from Wikipedia , public domain

Mathematical Framework

 1.2 Camera Calibration

Having explained the underlying geometry behind the ideal pinhole camera model we need to adapt it to

real cameras and their physical limits. In mathematics, it is possible to define a lens set that will introduce no
distortions in the image captured. In practice, however, and due to manufacturing process inefficiencies two
types of distortion occur . Radial distortion , caused by the shape of lens not being parabolic , and tangential
distortion due to the assembly process of the camera in the factory.

Radial distortion causes a characteristic bending of straight lines as they get closer to the edges of the
image and on systems that are heavily based on those images it can have a very detrimental effect on
calculations that gets worse as the errors gradually accumulate in time. While disparity mapping algorithms can
partly withstand this kind of distortion due to using a relatively large neighborhood of pixels that overall remains
the same , point tracking and optical flow algorithms that estimate and track the camera position are very
vulnerable to this kind of distortion. The reason this happens is because the relative positions of pixels change as
they move to the edges and give wrong constraints for the system of equations to be solved later on.

These optical defects have been very notable during the analogue period of photography , when the
photographs could not be dynamically altered to correct this distortion. Modern commercial camera makers
often use low quality lens and mitigate the problem on the on-board image processing chip that reduces the
problem. Trying to take into account the automatic approximate rectification inside the black box of the camera
chipset makes the final “external absolute” rectification process even more difficult. Luckily due to the low cost
of computer webcameras the image captured by them is unaltered so we can study the distortion and then
remove it.

Barrel distortion Pincushion distortion

Tangential Distortion on the other hand is a matter of misplacing the imaging sensor relatively to the lens (not a
fully parallel placement) and therefore receiving a slightly skewed image.

 Figuring out the way with witch a camera distorts the projection of the world on to its image sensor is
called camera calibration. There are numerous methods and considerations to be taken into account to achieve
calibration , even methods that gradually “auto calibrate” the raw input images without special patterns and
objects or prior training of the algorithm. [42] .

The OpenCV implementation receives the corners between the chessboard blocks as inputs , which are
extracted using a corner detector. First, it computes the initial intrinsic parameters and sets the distortion
coefficients to zero. Afterwards using the Levenberg-Marquardt optimization algorithm [39][40][41] the
reprojection error is minimized until a stable parameter set is found. The method was conceived by Zhang [5]

Illustration 7: OpenCV Chessboard 10x7
calibration pattern Illustration 8: Typical Detection Image

Generated by OpenCV

and Sturm [43] and a thing that is worth to be mentioned is that the cameras used by GuarddoG are graded by
the manufacturer to have a less than 5% distortion and the algorithms work sufficiently well even when input is
uncalibrated.

*

Illustration 9: Raw images received from the cameras and their calibrated equivalent (the distortion
parameters are exaggerated to better show the way calibration alters the input images)

Mathematical Framework

 1.3 Image Rectification

Each camera has intrinsic and extrinsic parameters. Intrinsic parameters model the camera as a device

and they are constituted by the skew coefficient (γ) that is usually zero , the principle point or image center
(Cx , Cy) and Fx , Fy which is the focal point multiplied by a number that scales from pixels to distance (and is
defined by the size of a pixel in the image sensor) .

Extrinsic parameters give information about the position of the camera in the world , and are basically a
translation and a rotation matrix , usually combined in a 3x4 matrix.

The extended equations from the pinhole model for a perfect undistorted lens with with intrinsic and
extrinsic parameters are modeled by the following equations

s(
u
v
1)=(

f x γ cx

0 f y c y

0 0 1
)(

r11 r12 r13 t1

r21 r22 r23 t1

r31 r32 r33 t1
)(

X
Y
Z
1

)

(
x
y
z)=R(

X
Y
Z)+ t

x '=x / z
y '= y / z

u= f x x '+ c x

v= f y y '+ cy

x' and y' are used as an intermediate step to better show the

added computations when performing resectioning in the page that follows

Radial and tangential distortion correction gets included to the model using k1 , k2 , k3 coefficients for radial
distortion and p1 , p2 for tangential. They basically work by warping the image with a center of cx,cy and the
higher the distance from the center the more it is pushed away to compensate for the increasing distortion.

s(
u
v
1)=(

f x 0 cx

0 f y c y

0 0 1
)(

r11 r12 r13 t1

r21 r22 r23 t1

r31 r32 r33 t1
)(

X
Y
Z
1

)
(
x
y
z)=R(

X
Y
Z)+ t

x ' =x / z
y ' = y / z

r2
= x ' 2

+ y ' 2

x ' '=x ' (1+ k1 r 2
+ k2 r 4

+ k 3 r6
)+ 2 p1 x ' y ' + p2(r

2
+ 2x ' 2

)

y ' '= y ' (1+ k1 r 2
+ k 2 r 4

+ k 3r 6
)+ p1(r

2
+ 2y ' 2

)+ 2p2 x ' y '

u= f x x ' '+ c x

v= f y y ' '+ cy

Executing these calculations gives us the rectified position of a point captured by the camera.

Since re sectioning the image must be done for every frame received from the usb cameras (which serve
images @ 120 Hz) and since most camera chips don't offer a hardware interface for passing the distorition
parameters to the local integrated circuit so it can perform this kind of image processing with out involving the
main processor , a fast technique must be applied to avoid calculating all these displacements on every new
frame.

Since the camera doesn't change its focus settings , the distortion parameters are always the same. We
can use this knowledge to our advantage generating a precalculation frame that has pointers to the calibrated
positions as its elements after acquiring the distortion parameters.
That way , the expensive task of computing the formulas mentioned above happens only once (on program
startup) and the least possible overhead is added to the pipeline process (around 500 microseconds per frame on
the main development computer , hardware details are on the second part of this text). This tactic is followed
both by the OpenCV implementation , as well as the GuarddoG RoboVision stack.

*

Mathematical Framework

 2.1 Image Processing

Digital cameras are devices that capture the light that the universe reflects on their sensor. The general
problem most vision algorithms try to solve is guessing what kind of a world reflects the light in that way. The
algorithms presented here are building blocks that gradually transform the raw RGB input into more
computationally meaningful representations .

Convolution is a mathematical operation applied to sets of values that “redistributes” them according to
coefficients from a second set of values. The result is a new combined set that has similarities with both previous
sets. Convolution is originally defined in mathematical functional analysis and takes a slightly different form in
image processing where it is typically performed on a 2D array of brightness values. The carrier of the weights
is called a convolution matrix and its elements act as coefficients changing the neighboring elements of each
pixel. The larger the convolution matrix size , the smoother the redistribution , but due to the computational cost
the most common sizes for kernels are 3x3 or 5x5 with usually the middle pixel used as a point of reference or
an anchor point.

The values transformed by the convolution matrix are the red , green and blue light intensities of the
pixels retrieved from the image sensor. In the following example we assume a 3x3 kernel and a monochrome
image sensor that captured 9x6 pixels. The kernel is passed left to right and up to down until all of the elements
are changed. GuarddoG uses Blur , First and Second Derivative Convolution kernels that follow with example
images.

 1 1 1

 1 1 1

 1 1 1
 3X3 Convolution Kernel

 Divisor 9

As the anchor of the kernel passes from each element
of the image array the value (marked blue) gets
replaced by the addition of the neighboring elements
multiplied with the corresponding kernel coefficients.

H (x , y)=∑
i=0

Mi−1

∑
j=0

Mj−1

I (x+ i−a i , y+ j−a j)G(i , j)

The anchor element on the light intensities array will
become
(1x90+1x80 +1x70+1x90+1*80+1*70+
1x90 + 1x80 + 1x70) / 9 which is 80

 9 x 6 Original Light Intensities Captured

90 80 70 90 80 70 90 80 70

90 80 70 90 80 70 90 80 70

90 80 70 90 80 70 90 80 70

90 80 70 90 80 70 90 80 70

90 80 70 90 80 70 90 80 70

90 80 70 90 80 70 90 80 70

 An important thing to be noted is that values on the
edges of the array (marked orange) can not be
correctly calculated as not all neighboring elements
exist , common solutions for this is zero padding ,
using a different divisor to compensate for the missing
elements or skipping the elements that can not be
calculated correctly .

BLUR FILTER
(Gaussian Approximation)

1 2 1

2 4 2

1 2 1
Divisor 16

FIRST-ORDER DERIVATIVE
(Horizontal Sobel)

1 2 1

0 0 0

-1 -2 -1
Divisor 1

FIRST-ORDER DERIVATIVE
(Vertical Sobel)

-1 0 1

-2 0 2

-1 0 1
Divisor 1

SECOND-ORDER DERIVATIVE

-1 0 1

0 0 0

1 0 -1
Divisor 3

As someone can easily observe by thinking a little about the convolution process , it is a waste of
resources to perform multiplications with the null elements of a convolution matrix, and as an example for the
second-order derivative that has 5 null elements a little more than half the original number of multiplications
can be skipped. An additional optimization that can be performed is combining two convolution matrices in to
one to reduce memory access related latencies from two subsequent passes on the image.

 Horizontal
1 2 1

0 0 0

-1 -2 -1
 Divisor 1

 Vertical
-1 0 1

-2 0 2

-1 0 1
 Divisor 1

 Combined on
p1 p2 p3

p4 p5 p6

p7 p8 p9

The values p1 … p9 are the pixel values on the image array in which the convolution takes place..
In order to completely avoid multiplications (at least on the matrix part) we add and subtract the values and so
for the pixel 2 (p2) since the coefficient is 2 we do p2 + p2 .

 horizontal_sum = p1 + p2 + p2 + p3 - p7 - p8 - p8 - p9
 vertical_sum = p1 + p4 + p4 + p7 - p3 - p6 - p6 - p9

final_sum = square_root((horizontal_sum * horizontal_sum) + (vertical_sum*vertical_sum))

The final speed up is replacing the square root operation with a log base 2 approximation using shift operations
based on the IEEE 754 floating point arithmetic standards and the algorithm described below.

inline float square_root (const float x)
{
 union
 {
 int i;
 float x;
 } u;
 u.x = x;
 u.i = (1<<29) + (u.i >> 1) - (1<<22);
 return u.x;
}

Of course using an SIMD (Single instruction, multiple data) instruction set capable CPU with properly
aligned data and loop unrolling can speed up the operations even more but even without these steps , the code
form on this level is simple enough for gcc to do a good job optimizing it automatically.

Blur filters even out the colors on an input image using the median color value of the surrounding area .
Blurring is a common operation by vision software mainly used due to the fact that image sensors retrieve pixels
that suffer from noise , these noise spikes are reduced therefore leading to more stable edge and corner detection.

The First-order derivative operator acts as a differentiation operator , resulting in an output that only
responds to “change” of colors and ignores similar colored areas. Thus it is very useful as it reduces the image to
its more unique parts , its edges .

The second-order derivative operator also acts as a differentiation operator , resulting in an output that
only responds to “change” of “change” of colors (second order) and ignores similar colored areas while also
having a better reaction to sudden spikes on the color frequency. Its output also reveals the image edges but is
much more stable than the first-order operator.

Palette reduction reduces the total number of possible tones that one pixel can take from 16581375 on an
24bit color depth (255 * 255 * 255) to an other given number. Reducing the total possible colors causes
similarly colored pixels to fall into the same color bin. This can be leveraged to make the datasets more resistant
to noise. Conversion from a full color palette to a monochrome image , is a very common operation on computer
vision algorithms.

Thresholding can be used as a filter extension to apply a high (or low) pass bound on an incoming
signal and discard pixels that do not match the criteria. This is generally done after edge detection operations to
reduce false output caused by noise.

The RGB Movement operation is a direct absolute subtraction of each of the pixels (on each of the
color channels). This is passed through a low threshold and results on an output image with a large value where
there is a large color difference (movement) and 0 value when the pixel remains unaltered This “delta” version of
two images is useful in many occasions. First in determining if the stream of images is static , (so we can skip
redundant calculations and improve the performance and power consumption of the CPU) , it is important when
the robot is not moving and views a supposedly still environment as a really fast alarm function and it helps with
disparity mapping , since unoc

Histograms are produced by counting the total instances of the different colors on an area of an input.
They can provide a good general idea about an image , such as its brightness, color distribution and are used in
guarddog as a fast discarding mechanism for regions of the image when performing disparity mapping .

The miscellaneous image processing operations used by GuarddoG are mentioned in the table that follows

NAME OPERATIONS DESCRIPTION

Gaussian Blur 9 * Height*Width Blurring input image to reduce noise

Sobel edge det. 2 * 9 * Height*Width Edge Detection

Second-order de. 4 * Height*Width Edge Detection

Palette Reduce Height*Width Group color frequencies together to reduce them

Threshold Image Height*Width Discard information that may be subject to noise

RGB Movement 3*Height*Width Subtract row RGB values from two consecutive images

Histogram Height*Width Calculate number of pixels that have the same color

*

Mathematical Framework

 2.2 Corner and Feature Detection

After performing the various image processing steps mentioned above , to start moving away from the
image as a raw array of color frequencies and into a better representation , we must focus on specific points on it
that stand out and have unique characteristics . These points are called features or salient points and can be
picked using a multitude of methods. The features used by GuarddoG are corners and offer a good performance
and quality trade-off. They are both relatively inexpensive computationally to extract and also exhibit persistence
between frames produced from small movement of the camera , in normal indoor lighting conditions.

Some feature detectors such as SURF [7] pick points that not necessarily lie in a corner , but
nevertheless have a large eigen value and are scale and rotation resistant. The feature detector used by GuarddoG
is built with high performance in mind (and thus lower average quality of feature points) and is called FAST
[13]. It classifies a point as a possible corner by casting a bresenham circle of radius 3 around it. Thus from the
16 points casted if the intensities o f at least 12 contiguous pixels are all above or all below the intensity of the
central point by some threshold it returns a match.

*

Illustration 10: Left : An incoming image after passing through First-order Derivative Edge
detection , Right : The corners detected , highlighted with green X marks

A second feature detector that is used as a lower performance higher quality alternative and performs
adequately is the OpenCV cvGoodFeaturesToTrack method by Shi and Tomasi [15]. which utilizes a second-
derivative filtered image. It then calls cvCornerMinEigenVal and cvCornerEigenValsAndVecs to pick the
minimum eigen values under a threshold and again provides a list of good features on a reasonable
computational cost. The inner workings of the algorithm are based on texturedness criteria that are reflected by
the eigenvalues. Two small eigen values mean a roughly constant intensity profile within a window, a large and
a small eigen value , a unidirectional texture pattern and two large eigen values , patterns that can be tracked
reliably such as corners. All these are extensively discussed in the original paper [15].

M =(∑ (dI /dx)
2 ∑ (dI /dx∗dI /dy)

∑(dI /dx∗dI /dy) ∑ (dI /dy)
2)

The minimal eigenvalue is then picked
since :

x1 , y1 corresponds with λ1

x2 , y 2 corresponds with λ2

a nd compared t o a threshold

A typical image retrieved from the camera consists of a finite number of pixels. The corners returned by
the algorithms mentioned above are integers but in reality it is very improbable for a corner to lie exactly on the
center of a pixel. This inaccuracy is enough to effectively derail the pose tracking algorithm that takes the
corners as its only input and has a tendency to accumulate errors and thus we need more detail about where the
corners truly lie. A detected pixel with coordinates (123,69) given as a result from the algorithms above may be
fine tuned to a real number such as (123.349 , 69.512) for example.

Illustration 11: An instance of the algorithm detecting a
feature (corner) by sampling the 16 points of the circle
casted around the point 7,4 using the FAST algorithm.
The detector finds two similar colored points and
succeeds in detecting the corner.

To start approximating the new corner we have to build up a system of equations that when solved will
give us a sub pixel approximation. The OpenCV method for this work is called cvFindCornerSubPix and it uses
simple vector algebra to achieve it. It is based on the fact that the dot product of orthogonal vectors is zero and if
one of the two vectors does not exist (is zero) it is again zero. This forms several equations that are all equal to
zero which when solved provide a better set of coordinates for the corner.

〈∇ I (p) , q−p 〉=0

The dot product of the Gradient of pixel p with q – p is in both cases zero

With a system of enough p points the point q is re positioned with better precision but the process can be
repeated with as many iterations needed until an accepted accuracy is achieved. For example to achieve a tenth
of a pixel accuracy , the process must be repeated until two subsequent q approximations differ less than 0.10
pixels .
*

Illustration 12: Left : In which pixel exactly does the corner lie ? Right : As the same corner image is
viewed from increased distance (or in a increased resolution) the inaccuracy gets smaller compared
to the total area covered

Illustration 13: A
hypothetical point p and
the two vectors that lead
to it from point original
corner point q

Illustration 14: A
hypothetical point p on
the same line with q

Mathematical Framework

 2.3 Template Matching and Integral Images

After image processing is finished producing “versions” of the data that reveal different aspects of the input
images , the next technique performed by GuarddoG is called Template Matching.
There are numerous criteria that can be used to compare two image parts and decide if they match.

GuarddoG uses a combination of pyramid segmentation , feature and template based matching across different
templates to achieve high performance without sacrificing result quality. To this end the use of integral images
speeds up and greatly improves the algorithm (performance-wise) .

The most simple and computationally efficient method for comparing two blocks of pixels is named SAD (Sum
of Absolute Differences) and is described by the following equation.

SAD=∑
x=0

width

∑
y=0

height

∣(image1[x][y]−image2 [x][y])∣

 This operation can be hardware accelerated on MMX and SSE2 instruction capable CPUs and thus is very lite
weight. Although there are other metrics to find out if two image blocks match (and how similar they are) such
as MSE (Mean Squared Error) , SATD (Sum of absolute transformed differences) , Normalized Cross
Correlation (NCC) and other even more complex methods.

To make up for quality loss , while keeping the increased performance that SAD offers GuarddoG compares
different “versions” of the patches that resulted mainly from convolution operations on the original data. That
way the computational cost is moved from the block matching operation that can be performed millions of times
(especially in large images) and does not take a guaranteed time to converting the image itself which has a
fixed sized.

The different SAD results are then combined into a single value according to weights to compensate for the
different range of values in each of the sub images. In order to further skip unneeded calculations a local
histogram is used as a threshold that can completely avoid calculations if the 2 image blocks bear no
resemblance at all (i.e. one is completely white and the other completely black)

*

Before going into more detail about the template matching function , another useful representation for massive
calculations on images is called integral images , or summed area tables.

I (x ' , y ')=∑
x=0

x '

∑
y=0

y'

(image[x] [y])

 I(x,y) is calculated as shown above for every pixel of the image array . We can skip a huge number of adding
operations and memory access for an arbitrary area of the image (limited only by the maximum value of an
integer on the machine). Any block addition operation is thus reduced to 4 operations.

∑
x=x1

x2

∑
y= y1

y2

image [x] [y]=I (x1 , y1)+ I (x2 , y2)− I (x2 , y1)−I (x1 , y2)

The resulting operation is not SAD because the subtraction does not produce an absolute difference on each
pixel , the resulting operation is a plain Sum of Differences which is an even worse metric than SAD but it has
such a big performance impact , that when used in conjunction with the sub images mentioned before it can
make dense disparity mapping feasible , and when used in small enough areas provides good overall results.

Instead of :
|image1[x1][y1] – image2[x1][y1]| + |image1[x2][y1] – image2[x2][y1]| + … + |image1[xN][yN] – image2[xN][yN]|

we have

image1[x1][y1] + image1[x2][y1] + … + image1[xN][yN] - (image2[x1][y1] + image2[x2][y1] + … + image2[xN][yN])
which is the same with

image1[x1][y1] – image2[x1][y1] + image1[x2][y1] – image2[x2][y1] + … + image1[xN][yN] – image2[xN][yN]

*

Illustration 15: The things taken into account when comparing patches

*

Illustration 16: Typically , we find the sum of the green area by adding all
the pixels in it performing (x2-x1)*(y2-y1) operations

Illustration 17: We can find the sum of the green area by performing 4
operations , I(x1,y1)+I(x2,y2)-I(x1,y2)-I(x2,y1) provided we have first
calculated the integral array I

Illustration 18: A SAD metric returns total mismatch of these two
blocks. An addition of differences metric (not absolute) such as
the integral imaging technique described before returns a total
match of the two image blocks

Mathematical Framework

 2.4 HAAR Wavelet based Face Detection

Haar-like features are digital image features used in object recognition. Their similarity with Haar

wavelets is what gave them their name and they were used in the first real-time face detector. GuarddoG uses the
OpenCV implementation of a haar cascade detector with an appropriate training file , while the implementation
is largely based on the Viola Jones Face detection algorithm (Robust Real-time Object Detection) [44].

There are many approaches to face detection and as a refinement recogniton , including eigen faces [45]
, image pyramids [46] , and mixed methods [47] , each of which have their own pros and cons .

The reason for choosing a Haar feature based face detection is that it is again accelerated by integral
images and thus it can fit in nicely in the pipeline of the vision processor algorithm while performing incredibly
well for upright faces that are the only kinds of faces that a small indoor robot should normally respond to.

A Haar Wavelet is a small region that consists of two areas , one black (low value) and one white (high
value) . As a pattern it can have a lot of iterations , and the ones displayed bellow are the most common ones.
To decide if a feature is present , a simple sum operation is performed on each of the two areas and then the
intensity difference is calculated between the white and black areas.

Haar feature detection is a multi scale function basis and frequency is generally determined by its scale,
not the direction. As many image bases, it forms a laplacian pyramid where its subscale is the subsampled low-
resolution version (pre-filtered) of the signal plus a number of basis-projected versions of the signal for the high

Illustration 19: Common Haar Wavelets

SumB = The Sum of color intensities in black area
SumW = The Sum of color intensities in white area

FeatureValue = SumW – SumB

If (FeatureValue > Threshold) { FeatureValue=1 }
 else { FeatureValue=-1 }

frequency components of that level. For instance the HWT of an image at a given (frequency) level produces a
low freq image (LL, smoothed and subsampled) + a LH, a HL and a HH component corresponding to the 1st,
2nd and 5th pattern describe in the illustration 19. That way the image is transformed to an array of response
numbers to these simple patterns and using a correct cascade of haar wavelets appropriate to the size , and
orientation of detection this can be used as a tool for generic object detection. [14]

The Viola and Jones detector basically works using this framework to discard portions of the image as
“non-faces”. To construct an optimal haar cascade the classifier is trained with two image sets , one with faces
(for face detection usage) and one with non-faces and an adaptive boosting machine learning algorithm ,
popularly coined as AdaBoost [38] picks the best features that will drive the face detector.
A sample detection image is the following , using the OpenCV cvHaarDetectObjects implementation and the
haarcascade_frontalface_alt.xml cascade. The good response rate of this method was also confirmed by realtime
usage on the International Fair of Thessaloniki 2011 where GuarddoG collected over 4500 faces on a course of a
week with a very low false detection rate.

*

Illustration 20: Left : Sample face detected (marked by purple circle) , features detected by the corner
detector explained at topic 1.2.1 (marked with yellow dots). Right : a possible HAAR cascade
manually created for dramatization of the way HAAR Cascades digitize images and thus serve well for
two dimensional face and object detection.

Illustration 21: Random faces out of a
4500+ faces collection gathered during
IFT 2011

*after

Mathematical Framework

 3.1 Epipolar Geometry

Assuming a rectified input of two pinhole cameras with a known alignment , viewing a 3D scene, there
are some geometric relations about the projections of 3D points among them.

Both cameras see the world from a different viewpoint , and while the projected image is different there
are some geometric constraints that can be leveraged to extract depth data using disparity mapping , a process
which will be analyzed later.

For reasons of efficiency this project uses cameras positioned in parallel so the epipolar plane forms a
parallel line from frame to frame. This configuration is used to reduce errors caused by incorrect calibration and
reduce the overall complexity of the algorithms that are based on matching parts from one image to the other.

*

Illustration 23: A non parallel alignment
where we can see highlighted the camera
centers C and C' , the baseline that goes
through both of them , the epipoles e and e'
which are the intersections of the image
planes with the base line , the projection of
the point X at x and x' when connected to the
epipoles gives us the epipolar lines l and l'

Illustration 22: The parallel alignment used by
GuarddoG , all the epipolar lines are parallel.
The base line between C and C' does not
intersect with the image planes.

With the parallel setup the two projection images are essentially being produced by a translation of the
camera center parallel to the image plane. This results in the points e and e' being in infinity , and the baseline
never touching the image plane (since it is parallel to it)

Since the projection of all the points on the line from C to X and C' to X lay on the l and l' epipolar
lines , to find out the projection of the ducks head on the right image we can reduce our search area in the same
height coordinates from image to image and that makes disparity mapping practical for computation.

 From a stream of frames (in the axis of time and not space) observed as the robot moves , since we
have lots of different types of movements and combinations of rotations and translations , epipolar geometry is
once again a useful concept for the calculation of the fundamental matrix between two frames. The reason for
this is because it provides the fundamental matrix equation constraints. GuarddoG though uses homographies
and not the fundamental matrix for camera pose estimation since the 3d points have a much larger overhead
since they have to be extracted through disparity mapping and typically have a higher error rate and lower
coverage than the corners that are used for the homographies.

*

Illustration 24: The stream of incoming images spans both in time and space axis.
Epipolar geomtery can help us move in both directions provided that the scene we
view as we move remains static.

Mathematical Framework

 3.2 Binocular Disparity Depth Mapping
on a parallel camera setup

Binocular disparity depth mapping is a procedure that uses two image sources as input and produces an

output containing depth information about the scene viewed. This is achieved by matching small parts from the
left image to the right one and vice versa and calculating the difference of the image region projections.
Due to the complex ill-posed nature of 3D scenes , occlusions , specular lighting highlights and frequent low
texture areas , it is a difficult task especially when computing a dense depth map , since there is a very large area
to search for every 3D voxel of output.

Since the disparity mapping algorithm developed as a part of the project differentiates from traditional
block matching algorithms since it uses summed area tables , this topic will diverge from the others since it
contains detailed comparisons between other algorithms. GuarddoG uses a parallel binocular camera setup on
rectified images which simplifies the procedure since , as discussed in the previous topic , epipolar lines are
collinear and parallel. This reduces the vagueness of the search domain and and also reduces the total number of
worst-case operations , which as seen in the overview are in the worst case 24,576,000 comparison operations
(using a 10x10 window this means 2,457,600,000 pixel operations) for two 320x240 images. For performance
reasons the resolution of the two images is also 320x240 due to the target low-end CPU

Typical disparity mapping algorithms use a metric such as SAD , SSD , MSE and others as mentioned
in the Template Matching topic of this document. There are many algorithms for disparity mapping which use
different approaches and ideas on the subject. A list of related disparity mapping algorithm can be found in the
website of the Middleburry benchmark for stereo vision (vision. middlebury .edu/stereo/eval) ,
which is a list of algorithms compared on the same rectified image datasets. A very informative taxonomy of
dense disparity mapping algorithms , also published by the Middlebury College [30] is an invaluable source that
compares both the methods and quality metrics for each of the methods. The GuarddoG algorithm fares
relatively well when taking into account the simple principles of its operation , especially for low quality
settings which use a large quantizer reducing the depthmap resolution .

Disparity mapping , geometry overview Illustration 25:

http://vision.middlebury.edu/stereo/eval/
http://vision.middlebury.edu/stereo/eval/
http://vision.middlebury.edu/stereo/eval/

GuarddoG does not rely on very detailed depth maps since pose tracking happens using 2D points on the
image projections , and depth maps are mainly used for collision avoidance tasks.

The classic approaches on dense disparity mapping procedures use the model on illustration 25 and can
be grouped in 3 steps.
1 – Preprocessing the image to make it suitable for the nature of operations on step 2
2 – Performing the comparison operations from one image to the other and storing the results on a depth buffer
3 – Refining the output depth buffer using some smoothness constraints

Comparisons (step 2) are typically distinguished by their matching method (SAD , SSD , absolute
difference etc.) and optimization function (graph-cut , dynamic programming , winner takes it all , simulated
annealing , phase matching etc .) . The Middlebury College taxonomy paper [30] again provides a good and
contemporary resource for sorting out the different algorithms.

In GuarddoG the approach followed , described in general terms is to focus on preparing many
representations of the data on the preprocessing step , and then use raw subtraction on them (Sum of Differences
with the help of summed area tables) with a window aggregation on a pyramid of different levels and a winner
takes all optimization function.

The algorithm is compared with the libELAS and Hirschmuller disparity mapping algorithms which are
briefly explained in the following paragraphs.

The first step , preprocessing , is typically the fastest part of the procedure , since it does not involve
iterations on the image. Converting an image to its sobel derivative for example requires 320x240x6 = 460,800
operations (much less than the 2,457,600,000 operations worst case for step 2 , with an even larger impact on
real CPU time , due to less data locality overheads) .

Guarddog uses the following image representations :
 → Second derivative → Summed Area Table Representation
RGB Image → Gaussian Blur → Sobel Edge → Summed Area Table Representation
RGB (Movement) Difference With last RGB Frame → Summed Area Table Representation

The RGB Movement difference metric is also one of the areas of the GuarddoG algorithm that makes it
better suited for disparity mapping on a stream of successive moving images since the moving edges act as a
coefficient that helps matching quality , and thus still disparity maps (such as the ones on the Middlebury
benchmark) provide a worst result than real operation moving imagery. This is also the reason for choosing the
specific camera controllers (analyzed extensively in the hardware camera sensors topic) since their 120 fps
input and fast shutter enables “clear” edges that stand out on movement ,even in moderate movement scenarios.

The second step involves performing a very large number of comparisons between areas on the left
image and areas on the right one to find a pair that is the closes match and gives the true disparity value for each
of the pixels. Methods such as libELAS [26] use robust support points which are used as a basis for neighboring
points and interpolation is performed on triangular areas for pixels between them thus reducing the time needed ,
instead of an exhaustive search through the whole image. This has a more dramatic performance impact on large
resolution images , where there is also more information available for increased disparity resolution and thus the
low resolution benchmark that follows doesn't do justice to the algorithm , but it is a good indicator of its
performance.

The next method compared with the GuarddoG disparity mapping algorithm is the work by Hirschmuller
[27] implemented in the StereoSGBM method of OpenCV , (Semi Global Matching). Its results are impressive
both for their accuracy and their speed and as an algorithm it solves the disparity mapping algorithm by trying to
minimize an energy function using mutual information [28][29].

GuarddoG uses a traditional disparity approach which calculates all the possible window matches and

compares their score keeping the best (winner takes it all).
The novelty of the algorithm is that it uses integral images and comparing a combination of histogram , sum of
differences on sobel , sum of difference in movement , sum of difference in second derivative and sum of
difference on rgb values metric , each of which is performed with 4 operations instead of a NxN for a window of
size N. Although this idea and work done on this disparity mapping algorithm originates by own experiments in
2007 it still remains useful today even compared to state of the art disparity mapping algorithms targeted for real
time operation. Integral images and sums of raw differences could also be used on many of the other algorithms
that use a different approach for a cumulative improvement of performance in addition to their own speed ups.

The third step , post processing typically re scans the output and normalizes it removing outliers and
smoothing it with a gaussian or other function. Empty areas can be filled with neighboring depth values and
iterative algorithms can pass the output to the second step again until convergence to a stable result or a timeout
occurs. GuarddoG has a simple gap filling algorithm as a post processing filter but it is typically not activated
since without outlier filtering it can help propagate noise and degrade the precision of the depth map.

GuarddoG (traditional) disparity mapping algorithm pseudocode
xL_Limit = height
yL_Limit = width
x_step = matching_window_width / detail
y_step = matching_window_height / detail

while (yL < yL_Limit)
 {
 xL = 48; // Starting point , typically 15% of the image size therefore 48
for a 320x240 image
 while (xL < xL_Limit)
 {
 best_match = Infinity;
 if (//Filtering low texture areas to reduce errors
 EdgesOnInputWindow(
 xL,yL,
 matching_window_width,
 matching_window_height
) > edges_required_to_process_threshold)
 {
 MatchWithHorizontalScanline (
 xL,yL
 matching_window_size_x,matching_window_size_y
 &best_match,
 &xR,&yR
)

 if (best_match != Infinity)
 {
 /* WE FOUND A MATCH */
 RegisterDisparity(xL,yL,xR,yR,window_width,window_height)
 } else
 { /* AREA IS EMPTY :P */ }
 }
 xL+=x_step
 }
 yL+=y_step
 }

MatchWithHorizontalScanline
(
 xL,yL
 matching_window_size_x,matching_window_size_y
 &best_match,
 &xR,&yR
)
{
 xR_Limit=xL
 yR_Limit=yL // this can be an offset used for bad calibration situations
 best_score=Infinity
 while (yR <= yR_Limit)
 {
 if (xR_Limit>MaxDisparity) { xR = xR_Limit-MaxDisparity; } else
 { xR = 0; }
 while (xR < xR_Limit)
 {
 score = ComparePatches
 (xL,yL
 xR,yR
 window_width,
 window_height
); // This function uses integral images to extract a score
 // and this is the speed up of the guarddog algorithm
 if (best_score < score)
 { //New best result
 best_match=abs(xL-xR)
 }
 ++xR
 }
 ++yR
 }
}

*data sets after here

Illustration 26: Disparity Mapping on the GUI of GuarddoG

The following is a graph of covered area with depth information (percent) vs processing time

for quality 1 we have values between 15,000 – 50,000 microseconds for coverage 0-35%
for quality 2 we have values between 35,000 – 90,000 microseconds for coverage 10-60%
for quality 3 we have values between 90,000 – 300,000 microseconds for coverage 10-70%
for quality 4 we have values between 40,000 – 300,000 microseconds for coverage 10-80%

The maximum coverage possible is 85% due to the initial value of xL , (xL = 48; as seen on the
pseudocode)

Quality 1 , (1,10,6,40) 30x30 , 15x15 , 8x8 Quality 2 , (1,10,6,40) 30x30 , 15x15 , 8x8

Quality 3 , (1,10,6,40) 30x30 , 15x15 , 8x8 Quality 4 , (1,10,6,40) 30x30 , 15x15 , 8x8

In the extensive comparisons that follow show the results for the different quality quantizers of the
GuarddoG disparity mapping on the Tsukuba stereo set., and after that a comparison between the ground truth ,
guarddog , libElas and Hirschmuller algorithms follows for quality setting 4 (since lower settings have worse
output) and 320x240 size input images

In all the GuarddoG examples mentioned here there are 3 passes with 30x30 , 15x15 , 8x8 windows and
the coefficients for each of the blocks in the comparison function is 1xRGB difference , 10xMotion difference ,
6xSobel difference , 40x Second-derivative difference
* data sets after here

Tsukuba Test Image Extensive Comparison

GROUND TRUTH OpenCV StereoSGBM Hirschmuller 34 ms

libELAS 52 ms GuarddoG (quality setting 2) 66 ms

GuarddoG (quality setting 3) 118 ms GuarddoG (quality setting 4) 290 ms

*

Tsukuba Test Image Extensive Comparison

LineSeg 1300+ ms Segmentation Based 2000 ms

Variable Windows 26000 ms Fast Bilateral 32000ms

Adaptive Weights 1221000 ms Segment Support 2358000

*

Original Image GuarddoG libELAS OpenCV StereoSGBM

flowerpots 142 ms 51 ms 38 ms

gddg (custom) 249 ms 28 ms 36 ms

bowling 173 ms 48 ms 40 ms

cloth 433 ms 51 ms 31 ms

lampshade 147 ms 39 ms 36 ms

middleburry 171 ms 27 ms 37 ms

*

Original Image GuarddoG libELAS OpenCV StereoSGBM

wood 181 ms 40 ms 37 ms

aloe 346 ms 52 ms 38 ms

tsukuba 205 ms 41 ms 35 ms

cones 251 ms 52 ms 32 ms

teddy 200 ms 40 ms 33 ms

*

Mathematical Framework

 4.1 Homography estimation

Given two sets of two dimensional points and the correspondence between them , a problem that arises
is calculating the transformation that took place to lead from the first set of points to the other. This is called a
homography and being able to find a close approximation of it is a tool that can be used to allow the camera
position to be tracked , utilizing purely visual means.

Supposing we have the points : p1 (x1 , y1 , 1) , p2 (x2 , y2 , 1) … pn (xn , yn , 1) which correspond to the
points p'1 (x'1 , y'1 , 1) , p'2 (x'2 , y'2 , 1) … p'n (x'n , y'n , 1)

We want to find a 3x3 matrix H so that p'i = H pi for every i from 1 to n

[
x ' i

y ' i

z ' i
]=H [

x i

y i

z i
]

[
x ' i

y ' i

z ' i
]=[

h11 h12 h13

h21 h22 h23

h31 h32 h33
] [

x i

y i

z i
]

performing the multiplication

[
x ' i

y ' i

z ' i
]=[

h11 x i+ h12 y i+ h13 zi

h21 x i+ h22 y i+ h23 z i

h31 x i+ h32 y i+ h33 z i
]

for inhomogenous coordinates

[
x ' i / z ' i

y ' i / z ' i

1]=[
(h11 x i+ h12 y i+ h13 z i)

(h31 x i+ h32 y i+ h33 z i)

(h21 x i+ h22 y i+ h23 z i)

(h31 x i+ h32 y i+ h33 z i)

1
]

Provided we have enough (correct) point correspondences we can form enough equations to find the
values of h11 , h12 ,h13 ,h21 ,h22 ,h23 ,h31 ,h32 ,h33 .but due to errors , not only caused by feature detection , but also by
the matching procedure even when using subpixel accuracy points that have a high percentage of correct
matches the usual case is that the equations cannot be solved as they are incompatible and there is no possible H
matrix that can satisfy them.

The solution to the problem is to start picking pairs and then compare their squared differences

∑ (x ' i−
(h11 xi+ h12 y i+ h13 z i)

(h31 xi+ h32 y i+ h33 z i)
)

2

+ (y ' i−
(h21 x i+ h22 y i+ h23 z i)

(h31 x i+ h32 y i+ h33 z i)
)

2

Gradually using a point picking algorithm such as RANSAC (the next theory issue examined) that due
to its design can be resistant to outlier matches , an adequatel approximation can be achieved .

The OpenCV methods for finding a homography , provided we have first extracted two sets of points
and matched them is called cvFindHomography and it can use the RANSAC , a least median or a raw method
using all of the available points. Due to the importance of pose tracking for the camera of the robot , and despite
of the stochastic nature of the algorithm the RANSAC option is chosen by guarddog to compensate for the
medium quality of features points and their matches.

*

Illustration 27: In a picture and a few words , a homography finds out the transformation that
took place between two views of a scene from two matched sets of 2D points

Mathematical Framework

 4.2 RANSAC

RANSAC or RANdom SAmple Consencous is an algorithm that is designed to pick elements from a
dataset in a way that maximizes a desired metric. It was first published in 1981 [37] and differs from other
algorithms that perform similar tasks because it filters out outliers as part of its process and for a high enough
probability of a dataset element being an inlier and a matching configuration it returns a result unaffected and
undistorted by the outliers.

The algorithm has a model that grades the points using a heuristic and iteratively picks small subsets of
the data and keeping track of the error rate of a particular subset. Each time a large enough subset fits the model
better than all previous ones this is recorded and kept as the new top standard which all feature subsets try to
improve. The obvious downside of this algorithm is that it has a very high complexity upper bound for the
procedure since it is stochastic (non-deterministic). To improve its performance it can be fitted with timeout
counters that will return after a given time with the best result calculated at the time or it can return the best
value when it is satisfactory compared to the maximum acceptable error threshold.

A high-level algorithm is given in the next page which gives a clear view of the inner workings of RANSAC.

Illustration 28: Left : A collection of points that form a line with a high number of incorrect
measurments , Right : RANSAC given criteria to match points along a line can successfully
reject outliers and recover the line , Images from Wikipedia , public domain

RANSAC Algorithm pseudocode

input:
 data - a set of observations
 model - a model that can be fitted to data
 n - the minimum number of data required to fit the model
 k - the number of iterations performed by the algorithm
 t - a threshold value for determining when a datum fits a model
 d - the number of close data values required to assert that a model fits well
to data
output:
 best_model - model parameters which best fit the data (or nil if no good
model is found)
 best_consensus_set - data points from which this model has been estimated
 best_error - the error of this model relative to the data

iterations = 0
best_model = 0
best_consensus_set = 0
best_error = Infinity
while (iterations < k)
 {
 maybe_inliers = n randomly selected values from data
 maybe_model = model parameters fitted to maybe_inliers
 consensus_set = maybe_inliers

 for every point in data not in maybe_inliers
 if (point fits maybe_model with an error smaller than t)
 { add point to consensus_set }

 if (the number of elements in consensus_set is > d)
 /*this implies that we may have found a good model,
 now test how good it is*/
 this_model = model parameters fitted to all points in consensus_set
 this_error = a measure of how well this_model fits these points
 if (this_error < best_error)
 {
 /*we have found a model which is better than any of the previous
ones,
 keep it until a better one is found*/
 best_model = this_model
 best_consensus_set = consensus_set
 best_error = this_error
 }
 ++iterations;
 }
return best_model, best_consensus_set, best_error

*

Mathematical Framework

 4.3 Optical Flow

Optical flow is a term describing the process of registering movement on a moving scene. The goal of
optical flow algorithms is to robustly track the points on an image as they move and overcome various
ambiguities that rise from the incoherent nature of 3d scenes. There are two kinds of optical-flow algorithms ,
dense and sparse and they differ in the total number of points they are designed to work on. Dense algorithms are
generally a lot more computationally expensive and are typically used in monocular setups to perform both
tracking and depth estimation.

There are many modeling approaches on building such an algorithm with the most famous being the
Lukas Kanade pyramid [23][24] method , which will be extensively described , the Horn-Schnuck method [48] ,
work by Black and Anadan [49].
All the algorithms make some basic assumptions about the world they view and regardless of the way the data is
processed (using pyramids , velocity fields or other constructs) .

The assumptions for the Lukas Kanade algorithm are the following :

Assumptions Details Weaknesses

Brightness Constancy Tracked surfaces retain the same color
between frames

shadow changes , illumination changes ,
blinking lights , camera exposure
changes , image noise

Temporal Persistence The rate of movement is sufficiently small
between frames.

fast motion , rapid movement , large
computation times between frames lead
to slower frame rate and thus larger
movement between frames

Spatial Coherenece “Large” enough surfaces move in groups small particles moving in different
directions

Illustration 29: Some bad instances on the optical flow
problem , 1 Brightness constancy violation , 2 fast movement
out of the detection window , 3 spatial coherence violated

The assumptions mentioned are translated to mathematical constraints which are checked for being in
effect in the neighboring regions of a feature point .

The first one(brightness constancy) is a very straightforward constraint and it basically means that as the
time (t) passes , a specific point (f(x)) does not change its light intensity , so the the partial derivative of the
change of the pixel value divided by the difference of time between the two frames must be zero.

Brightness constancy
∂ f (x)

∂ t
=0

The second is the rule of temporal persistence and building on the first rule basically means that for
every point I(x , y , t) in a 2D image with coordinates (x, y) and at a specific time (t) has the same intensity
response on an area “sufficiently close” in space and time I(x + Δx , y + Δy , t + Δt) , substituting the function I
with the partial derivatives it describes and dividing by Δt we get the final equation which has two unknowns ,
the velocity on the axis x and y , and thus cant be solved , this is were the third constraint comes in.

Temporal persistence I (x , y , t)=I (x+ Δx , y+ Δy , t+ Δt)

I (x+ Δx , y+ Δy ,t+ Δt)=I (x , y , t)+
∂ I
∂ x

Δx+
∂ I
∂ t

Δy+
∂ I
∂ t

Δt=0

dividing with Δt gives us

(I (x+ Δx , y+ Δy , t+ Δt)−I (x , y ,t))
1
Δt

=
∂ I
∂ x

Δx
Δt

+
∂ I
∂ t

Δy
Δt

+
∂ I
∂ t

=0

... =
∂ I
∂ x

V x+
∂ I
∂ t

V y+
∂ I
∂ t

=0

∂ I
∂ x

V x+
∂ I
∂ t

V y=−
∂ I
∂ t

Spatial Coherence , provides us with the last tool required. Having a “large enough” image patch moving
together allows us to take into consideration all the neighboring points and build more equations to solve for V x

and Vy . The neighborhood can be as large as we want it but a very large window will be easier to violate the
coherence constraint , a very small window on the other hand provides less data to work with and suffers from
the aperture problem shown in the image.

Illustration 30: The aperture problem.
First row : We have a black rectangle moving
diagonally over a small detection window
Second row : Inside the detection window
movement appears to be horizontal

For a 5x5 window we have the following over constrained system of equations

[
I x (P1) I y (P1)

I x (P2) I y (P2)

...
I x(P24) I y (P24)

I x(P25) I y (P25)
] [V x

V y
]=[

I t(P1)

I t(P2)

...
I t (P24)

I t (P25)
]

A v =b

This is then solved using a least squares minimization

A v =b
AT A v =AT b

v=
AT b

(AT A)

[V x

V y
] = [∑

i

I x (pi)
2 ∑

i

I x (p i) I y (p i)

∑
i

I x (pi) I y (pi) ∑
i

I y (pi)
2]

−1

[
−∑

i

I x (pi) I t(p i)

−∑
i

I y (pi) I t (p i)]
AT A is called a structure tensor and the equations can be solved when AT A is invertible.

 AT A is invertible when it has two large eigenvectors and this will happen in areas where texture moves in at
least two directions. Thats the reason corners are good tracking features (See corner and feature detection) since
they have large two large eigen values.

Though GuarddoG cameras capture frames with a rate of 120 fps on 320x240 and this in theory is a fast
enough rate to enforce the temporal persistence , this along with the aperture problem can be mitigated using a
gaussian image pyramid , iterating with a variable window.

*

Illustration 31: A
gaussian pyramid
window

Mathematical Framework

 5.1 Dead Reckoning

Having reached this point and with the framework described in the previous pages we have a good depth
point cloud for the scene viewed by the cameras , an accurate tracking of the camera pose using purely visual
means , a list of possible faces detected and this is enough data to start reconstructing the environment the robot
will move on. The simplest method for doing this is called dead reckoning. This approach uses a starting point
which is considered known and marked as zero and calculates all the subsequent movement data from the pose
tracker , the motor encoders and the accelerometer to estimate the next movement point , after the next position
point is reached , it is considered known and the calculation produces a new point. The process is repeated for
every movement and the result is a tree of movements originating from point zero. This is a computationally
cheap and easy to implement method but this ease comes with a cost. The problem using this method is that it
has no mechanism for error correction and even minuscule errors in every movement are gradually accumulated
and distort the world map generated by the robot. Before discussing a more advanced obstacle/self positioning
system that accounts for errors it is important to understand the principles of motion used by a dead reckoning
algorithm.
 Although this is still the mathematical analysis of the procedure we need to know a little more about the
way that the robot is steered in order to make a precise modeling of the procedure. Most robots use differential
wheels which is a configuration consisting of three or four wheels from which only two drive and the rest rotate
freely in any direction as shown on illustration 33. NL and NR are wheels can rotate freely in any direction
without resisting movement. DL and DR are two independent electric motors of known diameter and they can
rotate in both directions providing motion to the whole robot body. Planning ahead using the kinematics of the
platform is a fairly easy task using the geometry of the drive system as shown in Illustration 34

Illustration 32: The drive system for a
four wheeled front differential robot base
configuration

Illustration 33: The underlying geometry
when driving a differential drive system

Building on the simple mathematical equations derived using the geometry of the differential system
(Illustration 34) , we can begin to combine route segments to plan ahead for larger maneuvers. Once we have
an array of checkpoints that we have to pass through to reach the required goal (using the A* algorithm which is
analyzed in detail in topic XXX) a second algorithm that has the task of maintaining the correct heading on
each of the checkpoints by regulating power output to the two motors can output the curved result seen in
illustration 35 . Another simpler way to move between waypoints is to first make the required turn and then
travel in a straight line. With this type of movement there is no need for constant voltage regulation and motor
encoder sampling since either both of the wheels have the exact same power output (when going straight) either
they have the exact opposite (when rotating) In cases were it is not possible (due to hardware constrains) to
maintain the power fluctuations needed to steer the differential drive with precision the second approach is
better and also easier to implement.

As stated many times in this document , this simplistic mathematical model once again does not fully
mirror reality. Many additional complications to the problem include uneven terrain , imperfect gears and tires ,
finite resolution encoders on the motors and latencies during sampling. Needless to say dead reckoning as a
generic method does not compensate for any of those and so the real path that the robot travels on starts to
deviate gradually until it becomes completely erroneous.

*

Illustration 34: A path generated (to go from
left position to the right one) using gradual
turning driven by the differential supplying
different power output to the wheels to control
the curvature

Illustration 35: The same path
running both motors at the same
power output or at the exact opposite
to perform a complete turn.

Mathematical Framework

 5.2 Simultaneous localization and mapping

Moving forward from Dead Reckoning we must use a more intricate algorithm that will improve
precision on the generated map , both in terms of temporal location precision as well as obstacle validity. The
basis of SLAM is the same as dead reckoning , the difference is that instead of using a single mathematical point
at each of the algorithm iterations the robot is thought to be lying on a two dimensional plane with a given
probability for any point on the area. The sensory inputs along with the data coming from the motor encoders
produce a new probability distribution and this gradually refines the distribution up to a point when we can be
certain about the robot's whereabouts.

A method that overcomes these problems is called Monte Carlo Localization [19][20][21][22][23] which
is implemented as a part of the Mobile Robot Programming Toolkit created by the University of Malaga (
www.mrpt.org) . An other useful resource for SLAM methods is the OpenSLAM website (openslam.org)
which features a number of modified versions of similar algorithms.

Monte Carlo Localization is a global localization method , meaning that the algorithm begins with no a-
priori knowledge of the position of the robot whatsoever.
The algorithm is based on samples which are possible locations on the world the robot moves on. In each
iteration of the algorithm an array of sensor readings is used. In GuarddoG these consist of the encoder values on
each of the two wheels , the accelerometer reading , the 2 ultrasonic values and the point cloud with the tracked
camera position.

The algorithm works with a three dimensional state vector X [x , y , θ] that gives the position of the
robot and its heading and uses 2 steps , the prediction step and the update step. Prediction step uses the previous
, or starting particles and applies the motion model of the robot on each of them by sampling. This approximates
a new sample which does not yet incorporate sensor measurements. The update step consists of weighting the
sensor readings from the sample we took on the prediction phase against the measurements from sensors and
computing the likelihood of having a sample given the specific sensor input. By resampling from the weighted
sample set we acquire a new sample set picked using high likelihood samples and the process repeats producing
a constant list of the most probable areas that fit both the existing model and the sensory input.

The method is an estimation of the Bayesian filtering problem where we try to approximate the probability of a
point X given n sensor readings , or P (xn∣ Z n

) . Prediction phase (using only motion data) uses

P (xn∣Z
n−1

)an d P (xn∣xn−1 , U n−1) obtained by integration

P (xn∣Z
n−1)=∫P (xn∣xn−1 ,U n−1) P (xn∣Z

n−1)dxn−1 .

*

http://www.mrpt.org/

 The Update phase utilizes the sensory input Z to produce P (xn∣ Z n
)=

P (zn∣ xn)P (xn∣ Z n−1)

P (z n∣ Z n−1
)

Further resources about the theoretical justification of the algorithm are provided in the original publication from
the team of Dieter Fox [19][20][21][22][23] .

Monte Carlo Localization Algorithm

 input:
 Distance Ut
 Sensor reading Zt

 Sample set St={(Xt(i),Wt(i))|i=1,...,n}

 //PREDICTION PHASE
 for (i=1; i<n; ++i) // Update the current set of samples
 {
 Xt = updateDist(Xt, Ut) // Compute new location using motion model
 Wt(i) = prob(Zt|Xt(i)) // Compute new weighted probability
 }
 //UPDATE PHASE
 St+1 = null
 for (i=1; i<n; ++i) // Resample to get the next generation of samples
 {
 Sample an index j from the distribution given by the weights in St
 Add (Xt(j), Wt(j)) to St+1 // Add sample j to the set of new samples
 }
 return St+1

*

Illustration 36: An instance of the Monte Carlo Localization Algorithm in the MRPT
simulation application

Mathematical Framework

 5.3 A* Path Finding

Assuming a two dimensional map acquired by the operations above , and a stable track of the position
of the robot , there is need for an algorithm to perform path finding , in order for the robot to be able to reach a
target position and dynamically change its course when new obstacles are detected. The algorithm used by this
project for this kind of functionality is A* , an extension of Dijkstra's graph search algorithm. Successful path
finding is very critical because it means less battery drain due to unnecessary movements and better performance
as a guard.

A* uses a heuristic that has to never over-estimate the route cost , and such a heuristic is the Manhattan
distance that is commonly used by many implementations.
The complexity of the algorithm is | h(x) − h * (x) | = O(log h * (x)) where h is the heuristic used.
The cost of the algorithm for each new node is calculated using f(n) = g(n) + h(n) where g is the cost of the
transition to the new node and h the heuristic for the transition to the goal node.
A* is thus admissible since adding g which is an exact estimation of the distance from the source node to the
optimistic heuristic since will always make the algorithm seek the solution with the lowest possible cost.

Illustration 37: A* algorithm run instance ,every block has the
manhattan distance on the lower right corner , the previous
step distance on the lower left corner , and the sum on the
upper left corner.

A* Algorithm
OPEN SET = START NODE
CLOSED SET = EMPTY
while the node with the lowest cost in OPEN SET is not the GOAL NODE:
 current = remove lowest rank item from OPEN SET
 add current to CLOSED SET
 for neighbors of current:
 cost = g(current) + movementcost(current, neighbor)
 if neighbor in OPEN and cost less than g(neighbor):
 remove neighbor from OPEN, /*new path is better*/
 if neighbor in CLOSED SET and cost less than g(neighbor):
 remove neighbor from CLOSED SET
 if neighbor not in OPEN SET and neighbor not in CLOSED SET:
 set g(neighbor) to cost
 add neighbor to OPEN SET
 set priority queue rank to g(neighbor) + h(neighbor)
 set neighbor's parent to current

Reconstruct path following parent pointers from goal to start

One of the shortcomings of a raw implementation of an uncustomized A* algorithm is that in the real
world diagonal movement is a little further away than than horizontal (pythagorean theorem) . The result is that
returned paths can be “non optimal” for a real world moving robot. Added to this problem comes the fact that in
physical movement one tends to hold a course turning as little as it is possible. A* can provide an optimal
solution that has many turns , but this will take more time for the robot to be traversed. The solution to this
problem is keeping the heading of the robot as an information vector on every opened node and adding an extra
weight when turns are made , while also adding an extra weight when performing diagonal movement to balance
them.

The final element needed is a way to represent uncertainty about the mapped obstacles since there may
be errors in the input , not only caused by “mis-detection of obstacles” but also by the the lack of detail of the
map since an area of 200 m2 quantized at a scale of 10 cm2 per block results in an array sized 2000x1000 that
cannot reflect the full complexity of the scene.

Using these modifications , the output becomes better but there is a further improvement that can be
achieved by using the largest possible straight paths to connect sub regions of the A* paths. Doing that the
turning maneuvers of the robot are reduced to the fewest possible. To achieve that , after a path has been
extracted ,instead of reconstructing the path following the parnet pointers we use a second pass algorithm runs
which casts a line (using Bresenham's line algorithm) from the last step of the path to all the previous ones
until an obstacle is detected. The previous point before the obstacle is then marked as connected to the first one
and the algorithm continues until the source node is connected. This improves the operation of the robot . This
could also be improved in the future to use odometer based curves instead of point to point turning , something
that would also make the movement of GuarddoG seem more life like.

*

*

Illustration 39: The green block is the source , the blue the target , red/black blocks are obstacles and
gray areas , areas of uncertainty. The yellow path is the one that A* returns and the red line the
compressed path for as little turning as possible.

Illustration 38: The problems that may occur using an
uncustomized A* Algorithm , and how they are corrected

*

Illustration 40: A small maze like instance for the A* algorithm on the GuarddoG world mapping GUI
and the output path

Illustration 41: The 3D appearance of
obstacles

Illustration 42: The 2D appearance of
obstacles , which can be detected by ray casting
on the depth map of illustration 37

Mathematical Framework

 6.1 First-order logic and a Wumpus like world

GuarddoG lives in a Wumpus like world , or a Shakey one also taken from Russel & Norvig's AI a

modern approach. Its mission is to find intruders in a random home layout . It is only natural for an agent
operating in such a kind of world to use first-order logic and forward chains of inference to decide its actions and
interact with his human owners. GuarddoG uses a string passing interface for executing jobs. It features some
direct and immutable commands such as forward , backward , left and right , labels such as kitchen , living room
, toilet and operators to combine them. Although inference rules have been removed from the design (at the time
of writing) to reduce the surface of the project they are presented here for reference and they will be reinstated
in future versions of the robot.

This kind of functionality on one hand unifies the command interfaces of the robot and on the other hand
makes it more intelligent and human-like. Wether the robot is controlled via a voice to text module , a handheld
mobile device , a computer or a web interface the input is always strings of english sentences or buttons that can
be aliased to strings and this makes development much more practical and the robot much more easy to control
since it responds in the same way , whatever the medium of communication.

The syntax of the commands is simple and it looks like this

FORWARD(100cm)
NEW_PLACE(KITCHEN)
GOTO(TOILET)
SIGNAL ALARM
AUTONOMOUS MODE(1)

Inference can be used by creating an object model such as the one used in the OpenMind
(www.openmind.org) project which is based on a real world knowledge base. In the future a system possesing
such a database coupled with a vision based object recognition algorithm could make correspondances between
visual cues and their string descriptions that would easily be integrated to a the unified string interface described
above. Such recognition engines for point clouds already exist with most notable the RoboEarth project (
www.roboearth.org) which strives to be a world wide web for robots and where every object recognized by one
robot can then transmit its knowledge and share it with all the other robots. A list of the possible commands that
GuarddoG can execute can be found in the software unified string interface topic.

There is no point in further analyzing the mathematics behind first-order logic calculus in this document
since it is a mature and well documented subject . The book Artificial Intelligence of Stuart Russel and Peter
Norvig is an invaluable resource for the theory behind AI systems. [0] Robots with human-like artificial
intelligence have a long long way to go and this is apparent for any one that has a good understanding of the
problem's vast nature. GuarddoG focuses on seeing and space perception and tries to acknowledge simple
commands and scripts.
*

http://www.roboearth.org/

Implementation of Mathematical Framework

 6.2 The big picture

Having explained all the key theory concepts its time to move away from the purely mathematical/algorithmic
domain to the real implementation onboard GuarddoG :

Camera Model A pure pinhole camera model abstraction is assumed

Camera Calibration

Camera calibration is performed a priori using a 10x7
chessboard pattern and the OpenCV implementation to
be able to be comparable to existing projects. The
calibration parameters extracted are stored in a file and
used throught the project.

Image Rectification

The calibration parameters supplied by the calibration
step are read from the storage file at each program
startup and are used by the pipelining to transform the
raw images coming from the cameras to calibrated
equivalents where the mathematical model of the
pinhole camera is in effect.

Image Processing

The calibrated pair of images are first compared to the
last pair received and if they have a “noteable”
difference , acquired by direct subtraction of each of
the pixels , they are transformed using convolution
matrices to their gaussian blur , sobel , second-
derivative and integral image representations. If the
scene is static they are not processed at all saving cpu
time.

Feature Corner Detection
The sobel representation passes through the algorithm
explained in the corresponding theory topic and a list
of corners is returned and paired to the image.

RANSAC / Homography Estimation
 Optical-flow estimation

The corner list extracted is juxtaposed to the last
corner list and using RANSAC and the OpenCV
implementation a precise approximation of the
transformation that took place is returned.

Haar Wavelet Detection
Using the input images and cvHaarDetectObjects with
a training set for face detection , a list of faces is
returned.

Disparity Mapping
GuarddoG can use any one of the algorithms described
in the disparity mapping topic to extract depth
information from a pair of images.

A* Path Planning / Dead Reckoning

Using sensory input from the ultrasonic sensors and
the motor encoders as well as the depth map , the
camera transformation extracted with the
homography , the face list and accelerometer data the
position of the robot along with close obstacles are
added to a 2D map where A* can be executed to
provide a path towards the target position of the robot.

First-order scripting logic

State keeping and driving the robot towards a useful
purpose , leveraging the different abilities the robot
and performing the desirable work is assigned to the
scripting logic that synchronizes all of the individual
parts of the project and checks for errors in their
execution.

All of the above have been implemented as part of the project , but the part that is currently an
implementation deficiency is the scripting logic “Robot Hypervisor” that manages the many sub libraries used
by the project. SLAM is also not implemented but used on tests using an external completely separate project
called MRPT. Adding to the difficulty to implement it are hardware constraints , such as the bad quality of the
physical handmade assembly of the robot , the fact that it is mainly powered using the electrical grid which
means dragging heavy power cables which get tangled often. All these make position estimation very difficult
and are discussed in the next chapter of this document which explains hardware related choices and limitations.

It is also a note worthwhile , that most of the complex functionality resides in the “visual cortex” and
scripting logic. Sensor communication and low level details although they too adhere to mathematical principles
are very common place in bibliography and as implementations even on hobby level robotics. For those reasons
and reasons of concision they have been exempted from this theoretical analysis.

The next illustration outlines the way the individual methods form a common data pipeline implemented
in VisualCortex , MasterPathPlanning and the MotorHAL libraries of the project . The “intelligent” part of the
project resides in the right part of the RoboKernel , not shown in this graph . The implementation follows the
design that arises naturally from the nature of the operations performed on the data and all notation inside the
program's source code matches the notation used scientifically and in this paper to make the code more
maintainable and easier for a potential new programmer that may want to use it.

*

*

Illustration 43: A schematic of the pipeline of data as they go through the
system. This image is the connection diagram for all the methods presented
here

Hardware

 2.1.1 Overview

Building the physical platform of GuarddoG from scratch was a daunting task , partly because it meant
delving into uncharted waters for a computer scientist and partly due to the numerous options available that
should be tried and dismissed after a trial and error procedure. This has little if none scientific value
whatsoever but is a good warning about the kind of problems one will face when implementing these algorithms
in real world application , and not just in a computer simulation.

The project started with an implementation based on the Lego mindstorm kit with wireless transmission
of video and commands to the robot via bluetooth. This proved to be a wrong approach for a number of reasons
which became evident as time passed , due to the small range of bluetooth , the issues of privacy when
broadcasting unencrypted video , cost , small size and bad viewpoint , stability and many other design problems.
The second step was moving away from this approach and performing all computations on board the robot ,
which meant larger power consumption , larger batteries more weight and a chassis that should support it.

*

Illustration 44: Early experimentations while trying to create the initial GuarddoG
platform

Illustration 45: Moving on a local processing solution while still using the lego
mindstorm kit

This design proved to be better suited for the task but the mindstorm kit reached its limits , mainly due to
the weight of the whole contraption which could not any more be supported by the small motors and wheels.
Many other solutions were tried (such as filling the plastic on the wheels with cotton) reducing the size of the
PSU and others but the idea of using the mindstorm kit was finally abandoned.

After a lot of iterations a plastic body with a rigid base was chosen which is the ideal fitting size for the
project but issues of power consumption still remained. Instead of moving the whole 4+ kg base every time a
look towards a new direction was needed , it was much more efficient to turn just the “head”. Other problems
included the difficulty of calibrating the two cameras since their relative alignment changed as the robot moved
because they where loosely hold together by a clamp like wooden board. To improve this a 2 degrees of freedom
head was made from 2 tuppers (which is actually the most cost effective way to make one) along with a laser
cut plexi glass clamp that fitted exactly the camera dimensions thus improving , but not solving , some of the
alignment and calibration problems. To improve camera tracking in low texture , low brightness areas two
headlights were added to the design that could occasionally flash for illumination , and interaction with humans
to provide visual cues for the state of the robot. Along with them an arduino which is open hardware with
excelent documentation along with ultrasonic sensors , an accelerometer and other peripherals was included in
the design.

*

Illustration 46: The cotton filled wheels and the attempts to reduce weight by
changing the PSU and other parts

Illustration 47: Moving on to GuarddoG mk4

Though this design was the most fitting for the job it was still problematic mainly due to the poor
workmanship on my part and the fact that the different ideas have been literally patched the one on to the other
as they got added to the design. Thus knowing what the final requirements where after a long procedure and trial
error a new GuarddoG was designed using CAD in order to be able to be produced at fixed parts and made easier
to assemble and disassemble instead of relying on random parts. One of the most important final changes was
the use of a new camera pair which will be detailed on the following topic since it was a major improvement to
the old camera set of the robot.

*

Illustration 48: A more recent (at the time of writing) state of the GuarddoG physical implementation

Illustration 49: GddG mk4 Illustration 50: GddG mk5 a.k.a. Jack
mockup , the final version of GuarddoG which
is yet to be constructed

Hardware

 2.1.2 Camera Sensors and Synchronization issues

The cameras used by GuarddoG are based on the OV7720/OV7221 CMOS VGA (640x480) Sensor ,
and are cheap and easy to find as they are the camera system used by the Playstation 3 Gaming Console

Camera Sensor Key Specifications
Array Size
Power Supply Digital Core Voltage
Power Supply Analog Voltage
Power Supply I/O Voltage
Power Requirements - Active
Power Requirements - Standby
Temperature Range

Output Format (8-bit)

Lens Size
Max Image Transfer Rate
Scan Mode
Electronic Exposure
Pixel Size
Fixed Pattern Noise
Image Area
Package Dimensions

640 x 480
1.8VDC + 10%
3.0V to 3.3V
1.7V to 3.3V
120 mW typical (60 fps VGA, YUV)
< 20 μA
-20°C to +70°C

• YUV/YCbCr 4:2:2
• RGB565/555/444
• GRB 4:2:2
• Raw RGB Data

1/4"
60 fps for VGA
Progressive
Up to 510:1 (for selected fps)
6.0 μm x 6.0 μm
< 0.03% of VPEAK-TO-PEAK
3984 μm x 2952 μm
5345 μm x 5265 μm

Illustration 51: Left : The CAD designed and laser cut plexiglass rig that keeps the
cameras aligned correctly , Right : The PS3 cameras without the rig.

Stereo vision on a mobile robot traditionally requires expensive hardware-synchronized cameras.
Because standard stereo reconstruction algorithms assume that the images from the left and right cameras are
captured from a common scene at the same time , any motion that occurs between the left and right cameras
snapshots is equivalent to an error in the model. This error, causes the quality of the depth mapping to decrease
and the distance notion of the robot to be distorted , something that in turn impacts all of its functionality as
errors tend to accumulate .

Hardware synchronization which means sharing a common hardware clock , has been always available
only in high-end and custom hardware stereo vision systems. Thankfully , and after experimenting with different
camera solutions the inexpensive PS3 Eye camera proved a very high quality and performance choice since it is
built using the OmniVision OV7720 chip-set that is comparable to those found in many machine vision cameras.
The PS3 cameras can be hardware-synchronized using the exposed frame clock input (FSIN) and output
(VSYNC) pins . By shorting the VSYNC pin to the others cameras FSIN pin the cameras share a common
clock . To reduce the risk of a difference in ground potentials damaging the OV7720 , each camera has to be
also modified to share a common ground [11] .

This hardware overhaul guarantees that both cameras capture images simultaneously , but does not
guarantee that the frames will travel retaining their synchronization when sampled using the Universal Serial
Bus (USB) . Each camera has its own hardware clock and that means that in addition to the small distortion in
space (due to optics) we have a small distortion in the fourth dimension , the axis of time. To tackle this
problem GuarddoG uses cameras that have a very fast refresh rate of 120fps @ 320x240 or 75fps @ 640x480
pixels with a rewired shutter (FSIN , VSYNC pins) in order for synchronization on the hardware side of the
camera snapshots. A secondary problem is that there is non uniform latency over the USB cable and the USB
host controller . This problem is combated using direct frame grabbing via V4L2 , zero-copy passing by pointer
to the beginning of the image pipelining and static linkage of the libraries consisting of the project to reduce
delays and overheads.

*

Illustration 52: The position of FSIN and
VSYNC on the camera board

Illustration 53: Screws on the PS3 cameras and a
schematic of the alignment used

Hardware

 2.1.3 Motor System and Peripherals

GuarddoG uses two EGM30 motors made by Devantech which feature an encoder a 30:1 gearbox and
work at 12V. They are rated for usage in medium size robotics applications (weights up to 5kg) and perform
very well.

The manufacturers technical specifications follow for reference .

Rated voltage 12v

Rated torque 1.5kg/cm

Rated speed 170rpm

Rated current 530mA

No load speed 216

No load current 150mA

Stall Current 2.5A

Rated output 4.22W

Encoder counts per
output shaft turn

360

Minimum Speed 1.5rpm

Maximum Speed 200rpm

*

GuarddoG uses 2 ultrasonic sensors positioned in the left and right front of the robot. Although the robot
has a fairly robust vision system and depth estimation it has its limits. Just as a human that stands right in front
of a wall has no way of determining the obstacle since there are literaly no visual cues except by the haptic
feedback one experiences by touching it so does a robot. Due to the absence of arms and synthetic skin
ultrasonic sensors come in as a replacement and enable the robot to have a sense of obstacles on very dark and
very close situations.

Frequency 40kHz

Max Range 4 meters

Min Range 3 centimeters

To help with the task of registering movement correctly a low cost dual axis accelerometer is affixed to
the chassis of GuarddoG. It can register accelerations and decelerations that might be caused by bumping on a
wall somebody pushing the robot or in case of sudden change in motions. Although an IMU provides much more
precise data when implemented along a vision system [50] , due to the small budget of the project this just had to
do. A larger three axis accelerometer could in the future be affixed to the head of the robot to help the vision
system conserve its computational powers just like the ear labyrinth does on a human.

Measures ±3 g on each axis

Low current operation , less than 4 mA at 5 VDC

Movement/Lack of movement detection

*

Illustration 54: SRF-05
Ultrasonic Sensor

Illustration 55:
Memsic 2125
Dual Axis
accelerometer

Hardware

 2.2.1 The Energy-Heat-Weight-Cost Problem

Maybe the most mission critical and expensive element for a robust robot right now is its power supply
and battery autonomy. Although the computational speed of modern computer systems has continued to rise in
exponential rates while also slowly decreasing its power consumption , the same scale of improvements has not
been made in batteries and consumer grade available power technology.

The power consumption for a mobile robot is very high and relative to the mass , movement speed and
total mileage targeted for a platform and reversely related to the maximum service time of the robot between two
charging sessions. GuarddoG is supposed to guard homes and offices of 100m2 area something which takes a
great toll on the total autonomy time.
By increasing the capacity of the battery one increases the cost and (or) weight of the robot. By increasing the
weight of the robot this increases the energy required to carry the battery around and thus the waste “heat”
produced.

The problem can be mitigated by including one or more charging stations in the facility that the robot
operates in. This way they can act as rest points in between patrols. According to the battery chemistry (since
most contemporary battery technologies don't have memory issues anymore) this can also be used to keep the
charge level sufficiently high and thus delay full charges until the battery level is so drained that it will not last
for another patrol number multiplied by a safety factor.

Battery Technology Cell Voltage En. Density Mj/Kg Cost

NiCd 1.2V 0.14 €

NiMH 1.2V 0.36 €

Lead/Acid 2.1V 0.14 € €

Lithium/ion 3.6V 0.46 € € € €

Fuel Cell - 1.5+ (?) € € € €

Gasoline/Diesel - 70+ € € €

A more long-term problem is that all the battery cells mentioned above have a finite (and relatively
small) recharge cycle lifetime. Lithium/Ion for example lose 10% of their capacity each year in the best case ,
without taking into account the damage done to the battery by overheating , high current demand spikes and
other real usage scenarios.

This is a very large problem since robots should ideally have the same kind of operational uptime as
web-servers and other computer infrastructure but an empty battery can be a catastrophic failure which will
render them useless. The same goes for their life cycle as products and the lifetime of the other parts of the robot
that should be the maximum possible in order to reduce waste and improve cost effectiveness for a possible
buyer.*

Other novel ideas on power supply solutions is wireless transmission of power (for small scale devices)
, which has a long way to mature and will probably never be sufficient to move a 5+ kg device.

As a part of the GuarddoG design work , a large number of options was tested and the final battery pack
chosen was a custom 12V NiMH 10 cell battery that could only power the robot for approximately 1h (on an
average power consumption scenario). Other alternatives were tested but due to the lack of available funds the
power supply is currently a large deficiency both in GuarddoG as well in most other commercial available
robots.

The most promising technology for robots seems to be Fuel Cell technology which uses water and the
electrical grid to charge fuel cells that are like small engines and in turn generate electricity on board the robot in
the fashion of gasoline that recharges the battery in a car. An other source of relatively cheap power is
combining battery packs from laptops that since to their large scale economies can be relatively cheap.

Not having made a final decision about the battery type , meant not being able to make a charging station
for it , so a small switching module was designed and implemented that basically switches between 12V DC
from the onboard transformer from 220V AC , the charger of the NiMH battery and the NiMH battery itself.

GuarddoG mk4 currently uses an Intel Celeron 1.2Ghz Mini-ITX Motherboard. Instead of a hard-disk a
flash memory USB stick is used as a hard-drive reducing 5W of consumption and making the robot more shock
resistant. To further cut down battery drain the GuarddoG platform is planned to move to an ARM architecture
so that the logic computers could be directly powered using 5V 1A supply , something that will make the robot
be able to drop the need for an onboard transformer and make it even lighter. Eventually using composite
materials the weight budget will be 70+% distributed to the battery and motor system and the rest 25% to the
chassis , leaving 5% of the weight for electronics. A project that has not yet been released at the time of writing
but will probably be the host computer for future versions of GuarddoG will be the Raspberry Pi featuring an
ARM 700MHz CPU 256MB RAM and USB support. Due to its low specs there might be a cluster of two or
more involved in the design , one dealing only with the visual routines and the other one with controlling the
peripherals , logic and Speech to Text. Functionality. The peripherals of GuarddoG are controlled by an Arduino
which has a very small energy footprint compared to the motors and main computer. Networking is based on a
802.11 b/g WiFi adaptor that operates as a WiFi access point and through a GSM module that can operate
without WiFi infrastructure utilizing SMS and possibly GPRS/3G connectivity.

*

Illustration 57: Battery types tested,none fitted
the cost/weight-energy requirements of
GuarddoG but NiMH was the chosen chemistry

Illustration 56: The custom power "switch"
between charging AC operation and DC
operation , with help from Nikolas Zervos
(Telcom Greece)

The GSM module can also build upon the existing infrastructure for consumer cellphones , since each robot will
have a unique IMEI (International Mobile Equipment Identity) enabling some degree of theft protection. In
Greece since 2010 it is mandatory to associate a personal identification number with each mobile phone
number , so this also could serve as a framework for managing whose property a robot is.

Of course a consumer robot application should use a much more powerful CPU than the one that GuarddoG
relies for computing tasks. A custom VLSI could also provide a substantial speed up with low power
consumption requirements , and the same would also be true about the arduino part of the project which could be
more robust using a custom integrated circuit more closely coupled with the main system. Alas these things were
out of scope for this project so they are ideas not yet realized.

Having explained the reasoning and the problems we are trying to resolve , the following system diagram gives a
clear look on the internal communication scheme. The Arduino UNO uses I2C communication or analogue
sampling to communicate with its peripherals and the onboard firmware is responsible for exposing a high level
digital interface for all of them.

*

Illustration 58: A connection diagram for the different hardware modules

Hardware

 2.2.2 Parts List

Casing Costs

Various Plastics , screws , etc = 45 euro

Embedded Electronics
1x Arduino = 25 euro (Uno)
3x Infrared Led = 3 euro
1x RD-01 (or RD-02 Devantech motor kits) = 130 euro
2x Buttons (power -on) = 2 euro
2x Switches (power supply) = 2 euro
2x LED HeadLights = 10 euro
2x Ultrasonic Devantech SRF-05 with mounting = 40 euro
1x Dual Axis Accelerometer (memsic 2125) = 30 euro
Subtotal : 252 euro

Computer Hardware
(1x Fan = 5 €
 1x AC-DC 12 V Converter = 30 €
 1x PicoPSU 90W = 45 €
 1x Mini-Itx Motherboard = 65-75 € (Currently on guarddog Intel D201GLY2)
 1x 512-2048MB RAM DIMM (on guarddog 512MB DDR2) = 30 €)
or
(1x Car (12V) USB power supply = 5 €
 2x Raspberry Pi's = 52 €
 2x USB cables = 3 €)
plus
1x WIFI PCI card (WG311T) or USB = 30 €
2x Webcams (On guarddog MS VX-6000) = 92 € , 2xPS3 Eyes = 60 €
1x USB Flash Drive 8GB + = 20 €

Subtotal : 327 € mk4 (old hardware) or
 170 € mk5 (new hardware)

Total 624 € mk4 or 467 € mk5
 (batteries not included)
*

Software

 3.1.1 Overview

The software for GuarddoG has gone through 3 major rewrites from scratch. During its development
literary all aspects of the source code changed , from the programming language and design pattern of
implementation to the Operating System and libraries used. An effort was made firstly to have the best possible
performance as far as the architecture could impact it , low complexity and good seperation between modules.

In the beginning the whole project was a single executable and all the functionality was embedded in a
graphical user interface on a pc running Windows XP. As the software grew larger and at the time of the first
transition to the embedded computer onboard GuarddoG the limitations of this approach became apparent.
Windows XP was not made for this kind of deployment and using it running on a compact flash memory stick it
thrashed it destroying it after approximately 5h of usage (with all virtual memory settings , file indexing , etc.
off) . The operating system was replaced with Windows XP Embedded and although the issues with the flash
memory stick were solved using the File Based Writing Filter which prevented direct reading and writing to the
actual device and instead simulated the files in the RAM of the computer , permitting permanent writing at the
end of the session by passing the changes to the actual file system on the Compact Flash device and thus greatly
conserving read/write cycles. On the disadvantages of the WinXP Embedded OS there were many stability issues
(blue screens) and driver problems which were difficult to be traced due to the closed source nature of the OS
and eventually the decision was made to completely rewrite the daemon for a Linux/*nix based OS. The
graphical user interface was split into 7 major static libraries and on top of them two different executables could
be linked , one for “CLI-daemon mode” on the headless environment of the GuarddoG embedded computer , and
one with a full GUI based on wxWidgets for the development computer that made debugging easier providing
visual tools.

Illustration 59: A schematic of the software outline , rounded rectangles are external dependencies
plain rectangles are libraries implemented as a part of the project

*AFTER

The statically linked libraries share a common memory stack and heap and that allows efficient memory
reuse without unnecessary “interface” bureaucracy which is a common performance overhead. Some of the
libraries have standalone functionality and others with the prime example being libRoboKernel.a are delegation
libraries that coordinate the overall task accomplished.

During the Operating System's initialization phase and after run level 5 is reached the GuarddoG
initialization bash script (guarddog_init_service) is called and starts to prepare the runtime environment for the
main application. A tmpfs , a partition existing entirely in the RAM memory of the computer is created under
RoboVisionRuntime/ and the contents of RoboVisionCLI are copied there in order to minimize flash memory
wear. Persistent storage is provided by accessing ../DataSets which is the designated directory for storing non
volatile data , such as usage statistics , faces , state keeping etc. Permissions are also taken care of since tmpfs
typically start of requiring root privilleges.

 Secondary daemons such as the gsmsmsd are kickstarted and after testing if they all work execution is
passed to the RoboVisionCLI using the noinput flag since no direct user input will be possible (the console runs
in the background) . When the RoboVisionCLI executable stops the script resumes killing all possible processes
that may remain running and deallocates the tmpfs.

 RoboVisionCLI process in turn being an instance without user input basically calls the initialize function
of RoboKernel which starts all the sub modules and sleeps until it receives information from the RoboKernel
that signals termination.

 RoboVisionX is an alternate executable that can be called adhoc without all the tmpfs intiializations
running from the RoboVisionX directory and it spawns a wxWidgets GUI which provides controls and visual
versions of the data handled by the RoboKernel and this is the interface used during the development of the
project. The directories for datasets continus to be ../DataSets so this is too a very easy and non-obtrusive design
since there is no need for additional lines of code to manage between development directory structure and actual
on board usage decreasing the surface area for bugs and easily avoided problems.

 A web interface which is provided using PHP and Apache can be used to access the platform using any
device with an internet browser. This service is currently protected using a simple password scheme but this is
also a very serious security topic since a compromised robot can pose a serious privacy and physical threat for its
owners many times worse than a compromised desktop computer. This kind of functionality can be easily
deactivated but it is ultimately very useful given a proper security identification system for remote operation
using cheap internet enabled mobile devices that are becoming common nowadays.

 All of the various sub modules have a dedicated thread that “runs” and serves them using the pthreads
framework. This threaded design is one of the great architectural strengths of GuarddoG since internally there is
no IPC used , (which would imply redundant memory copying). I/O operations overlap with CPU work ,
memory allocation is minimized since the same memory blocks get shared by all the libraries and
synchronization overheads are also minimal. Of course in order to keep the design resistant to race conditions on
memory access a simple “thread-safety” protocol is maintained since only RoboKernel , the delegation library ,
can decide when and where output from a library can be inputted in others , so these kinds of problems are
centralized in a single library where it is easiest to face them by following the natural pipeline of data from the
WebCameras to the motor controllers.

 Communication between External Interfaces (GUI , CLI , HTTP Interface , Speech Recognition , GSM
SMS etc) is performed using a Unified string interface with high level commands such as Move Forward and
others explained in more detail in the Unified String Interface section of the Software topic. This also has
proved to be a very “human” and economical in its implementation input system

 Next comes a process and thread creation diagram that can give a quick look on how the different
libraries are organized internally.

*

The Process and Thread creation map

*

*AFTER

The project has been using git as a version tracking management system since late 2010 , so 2 of the first crucial
years of its development are missing from the history-tree. Using the tools at Ohloh.net on the git repository an
interesting break down of the project can be extracted.

Language Lines Of Code Comments Comment R. Blank lines Total Lines

C 32,588 2,692 7.6% 5,091 40,371

C++ 14,067 4,316 23.5% 2,964 21,347

HTML 1,888 19 1.0% 81 1,988

Shell Script 1,432 203 12.4% 464 2,099

Ohloh.net also came up with figures about the development cost of such a platform using the Basic COCOMO
model with coeffcients a=2.4 and b=105 which is approximately $656,665 for the resulting 49,134 lines
codebase. The projected estimation was 12 person-years which is 3 times larger than the time it took. All these
data of course take into account the many years of development , the cumulative number of lines changed , etc.
The figures are a little exaggerated but taken into account that half of the work done (before 2010) building this
code was not commited it is an accurate estimation.

The code development tree uses git as a version management system. The repository is hosted on
github.com which offers on-line web visualizations of the code and data while also featuring bug/issue tracking
and a good platform for keeping programmers up to date with e-mails etc.

The project repository is https://github.com/AmmarkoV/RoboVision

It can be cloned for read only usage from a remote computer issuing :

git clone https://AmmarkoV@github.com/AmmarkoV/RoboVision.git

 Project dependencies can be automatically downloaded on a debian (apt-get) based linux distribution by
running ./apt-get-dependencies and the project can be compiled running the custom bash script ./make or by
opening the workspace file using Code::Blocks IDE.

The choice of an Open Source operating system was one of the most influential for the course of the project ,
since it made development easier and removed many programming overheads. A good example of this is Text to
Speech functionality. In a Windows operating system there are limitations according to the version of the system
(and for no other apparent reason) Windows XP can use the Microsoft Speech API but only up to version 5.1 ,
Windows Vista can use it up to SAPI 5.3 and Windows 7 to SAPI 5.4. In a Linux OS (ubuntu for example) to
make a program “speech-enabled” one can just issue “sudo apt-get install festival” to install the most up to date
version of the libraries required for text to speech based on work from the University of Edinburgh and then just
issue “system(“echo “Hello World” | festival –tts”);” .

To make direct usage of the library in Windows one must install Microsoft Visual Studio , download 4GB+ of
libraries and the Windows SDK just to get started. Linux is once again a lot easier. These kind of differences are
usually quietly ignored , but since it is one of the important lessons learned through the GuarddoG development
experience it must be stressed that development for scientific purposes comes naturally in conflict with the usage
of closed source profit oriented tools , especially when the international programming community can offer such
great alternatives such as Free and Open Source Software .

*

https://github.com/AmmarkoV/RoboVision

Working with images means processing very large volumes of data. The limited resources of the
computer also mean that the data must be efficiently stored and transported from one library to the other to
reduce the overheads of shifting large memory chunks from one place of the memory to another. To combat that
and since input sizes don't change size the GuarddoG software tries to be “zero copy” by passing pointers to the
data since they are stored on the program's heap and are available to all the different code modules. A good
example of this is the camera input which comes at pairs of 320x240 RGB values at a frame rate of 120 frames
per second or 2x225KB . V4L2 (Video 4 Linux 2) and the Linux Kernel maps the memory where the frames are
received into the executables address space , and from there on the image gets processed in all the ways
mentioned in the first part of this document without redundant memory copying trying to conserve CPU cycles.

Parts of the code that have to do with repetition of operations on to the incoming data are hand-
optimized by the OpenCV implementation using SIMD (Single Instruction Multiple Data) calls that are
supported by most of the Intel CPUs as well as recent ARM based CPUs such as the ARM11. Performance
statistics are kept using timers between all major calls which can give a very good glimpse of the overall
performance of the robot and helped with identifying problematic parts of the code during the development .

The project uses the following third party libraries.The code of GuarddoG (RoboVision) has a GPLv3 license.
Since the layout of the code uses its own model most of them can be fairly easily removed by different
implementations of possibly better performing libraries in the future.

Library Purpose License Dependency

OpenCV Feature/Face Detection BSD License +++

CMU-Sphinx Speech Recognition BSD License +

Festival Speech To Text MIT License +

wxWidgets GUI / Image Loading LGPL +

libPNG Image Manipulation libPNG +

Gnu Scientific Library Mathematics GPL +

Portable Threads Threading system LGPL +++++

libUSB USB communication LGPL +++++

 GSM-Utils GSM communication - +

Apache Web Server Web Interface Apache +

OpenGL+FreeGLUT 3D Visualization - +++

GnuPlots Performance Visualization GPL +

*

Software

 3.1.2 Libraries Outline

Video Input (libVideoInput.a)

Purpose :

Image Acquisition from USB webcameras using V4L2. Take care of synchronization issues on the two
cameras .. Recording/Playback of streams of input frames in order to create test suites that can be re-run without
the actual hardware to emulate it for review / benchmarking without additional coding effort on the rest of the
project. Future functionality may also include remote video streaming to include new deployment possibilities.

Key calls :

int InitVideoInputs(int X); Initialize memory for accomodation of X inputs (x is 2 in guarddog)
int InitVideoFeed(int inpt,char * viddev,int width,int height,int bitdepth,char snapshots_on,struct
VideoFeedSettings videosettings); Initialize video feed , this is called two times , one for /dev/video0 and one
for /dev/video1
unsigned int NewFrameAvailiable(int webcam_id); If this is set it means that a new frame is ready
unsigned char * GetFrame(int webcam_id); returns a thread-safe pointer to input for camera X , cameras are
typically 0 left and 1 right
unsigned int SignalFrameProcessed(int webcam_id); This must be called to signal that we are done with the
GetFrame call and a new frame can take its place

External Dependencies :

V4L2 , pthread , libPNG

Output :

 2 raw RGB frames that can be sampled directly from the webcameras or from an older recording. The output is
passed to Visual Cortex for processing

*

Visual Cortex (libVisualCortex.a)

Purpose :

Visual Cortex's role in the project is self explanatory. It is the library responsible for deriving meaning
from the stream of input images. Memory is organized in video registers which are structures that make
programming more intuitive. These video registers are allocated in three sizes unsigned char , unsigned short and
unsigned int according to the depth of information needed for each of the operations. All of the operations in the
library have to do (more or less) with transforming a video register and storing the result in the same or a
different video register. Precise timers monitor performance on operations , and the way this library works can
make it very modular. The library originally contained its own HAAR Classifiers , Corner Detection and
Homography Estimation code segments but due to their inferior performance these were easily changed with the
OpenCV calls to enhance the result. Disparity Mapping is also an example of this flexibility since both the
OpenCV and the Hirschmuller algorithm co-exist and can be dynamically changed as the default Disparity
Mapping technique.
 Performance statistics are automatically recorded and converted to live updated graphs using gnuplot ,
and a large array of settings can be modified to tune the different aspects of each algorithm (comparison window
sizes , thresholds , heuristics etc). Processing happens in three logical steps. The first involves the RoboKernel
or another library or executable calling unsigned int VisCortX_NewFrame(unsigned int
input_img_regnum,unsigned int size_x,unsigned int size_y,unsigned int depth,unsigned char * rgbdata); to
point the library to a new raw frame. If image resectioning is activated this frame gets converted to a resectioned
equivalent and if not it is retained as it is and checked against the last frame of the webcam. If they are both “the
same” or very similar the frame is marked as non-changing and subsequent operations are skipped since they
will output the same results and are redundant. When both of the frames are collected , the library is ready to
receive requests to extract depth maps , faces , and other useful information from the image pair. By default in
every frame processed corner detection and homography estimation is performed to keep accurate position
tracking without requiring external repeated commands to do so. Face Detection happens typically in one of the
two frames (depending on movement or “flow” detected on each of the images) in order to cut by almost half
its processing time and depth mapping is performed only when the robot needs depth estimations since it is
typically a large amount of CPU work.

There is a lot of side functionality implemented as part of the library and performance has been taken
seriously into account , utilizing summed area tables , pointer arithmetic , loop unrolling and other techniques to
maximize performance. The only optimizations not implemented were SIMD (Single Instruction Multiple
Data) operations on the Intel chips since a planned migration to an ARM architecture will take place and
OpenCL/CUDA accelerated filters since the current graphics board of the robot does not support them. Speed
could be dramatically increased (4x – 32x) in some cases by using these technologies. Despite of the difficulties
when implementing them the source code layout should provide a good framework to unobtrusively implement
them with minimal cost to the rest of the design.

*

Key calls :

unsigned int VisCortx_Start(unsigned int res_x,unsigned int res_y); This is the initialization call for the
library which sets up registers , precalculations and allocates state variables according to the image resolution.
unsigned int VisCortx_Stop(); This is the closing call for the library
unsigned int VisCortx_SetCamerasGeometry(float distance_between_cameras,float
diagonal_field_of_view,float horizontal_field_of_view,float vertical_field_of_view); This call sets some
camera information based on the manufacturer specifications.
void VisCortx_CameraParameters(int right_cam,double fx,double fy,double cx,double cy,double
k1,double k2,double p1,double p2,double k3); This call sets camera information based on calibration for the
specific cameras onboard the robot (Since every camera has a unique assembly with slight differences).
unsigned int VisCortX_NewFrame(unsigned int input_img_regnum,unsigned int size_x,unsigned int
size_y,unsigned int depth,unsigned char * rgbdata); This call passes the frames received by VideoInput into
the library.
void ExecutePipeline(); Signals that both images have been passed and that processing may commence.
void VisCortx_FullDepthMap(unsigned int max_milliseconds); This call starts depth mapping with a
timeout value for blocking the thread that called the depth mapping
unsigned char * VisCortx_ReadFromVideoRegister(unsigned int reg_num,unsigned int size_x,unsigned
int size_y,unsigned int depth); This returns a pointer to a video Register , i.e. the depth map register.
unsigned int VisCortx_RecognizeFaces(unsigned int cam); Extracts a list of faces.
unsigned int VisCortx_GetFaces(unsigned int vid_reg,unsigned int point_num,unsigned int data_type);
Gets a list of face coordinates
int UpdateCameraPose(unsigned int reg_num) automatically updates position values on MasterWorld
(another library) so it is not called externally

External Dependencies :

OpenCV , GSL , libFAST , gnuplot

Output :

 A list of faces detected on each of the input images , a depth map “3d point cloud” using information extracted
by means of disparity mapping , a list of feature or salient points , and an array containing the elements of the
transformation that took place between the current and the last pair of frames

*

World Mapping
MasterPathPlanning (libMasterPathPlanning.a)

MasterWorld (libMasterWorld.a)

Purpose :

Mapping services , position tracking , path planning , SLAM , obstacle avoidance and general movement
planning. The functionality is split in two libraries one called MasterPathPlanning which offers a two
dimensional world abstraction , along with scale information and an agent abstraction in order to be able to
represent moving persons (faces) detected and receive high level commands such as “plan a route to person X”
or location names for commands like “plan a route to kitchen room”. PathPlanning also gets notified of changes
on the position of the robot through MasterWorld that may produce a new path plan towards the target .

None of the two libraries actually executes movement , path planning plans a route and master world
transfers to and from the planning logical module to the Hardware Abstraction Layer (HAL) presented next.
MasterWorld does not yet perform internal SLAM (only dead reckoning) but the functionality will have to be
appended later.

Key calls :

struct Map * CreateMap(unsigned int world_size_x,unsigned int world_size_y,unsigned int
actors_number);
struct Map * LoadMap(char * filename) ;
int SaveMap(struct Map * themap) ;
int SetMapUnit_In_cm(struct Map * themap,unsigned int cm_per_unit) ;
int ObstacleExists(struct Map * themap,unsigned int x,unsigned int y) ;
int ObstacleRadiousExists(struct Map * themap,unsigned int x,unsigned int y);
int SetObstacle(struct Map * themap,unsigned int x,unsigned int y,unsigned int safety_radious);
int RemoveObstacle(struct Map * themap,unsigned int x,unsigned int y,unsigned int safety_radious);
int SetAgentHeading(struct Map * themap,unsigned int agentnum,float heading) ;
int SetAgentLocation(struct Map * themap,unsigned int agentnum,unsigned int x,unsigned int y) ;
int SetAgentTargetLocation(struct Map * themap,unsigned int agentnum,unsigned int x,unsigned int y) ;
int MoveAgentForward(struct Map * themap,unsigned int agent,float leftwheel_cm,float rightwheel_cm) ;
int AddObstacleViewedbyAgent(struct Map * themap,unsigned int agent,float horizontal_angle,float
vertical_angle,float distance_in_cm);
int FindPath(struct Map * themap,unsigned int agentnum,unsigned int timeout_ms) ;
int ExtractRouteToLogo(struct Map * themap,struct Path * thepath,char * filename) ;
int ExtractMaptoHTML(struct Map * themap,char * filename,unsigned int map_size);
int GetRoutePoints(struct Map * themap,struct Path * thepath) ;
int GetRouteWaypoint(struct Map * themap,unsigned int agent,unsigned int num,unsigned int
*x,unsigned int *y) ;
int GetStraightRouteWaypoint(struct Map * themap,unsigned int agentnum,unsigned int count,unsigned
int *x,unsigned int *y);

Output :

These 2 libraries provide access to a virtual environment when according to the robot sense of depth
acceleration , movement etc a virtual “simulation” can be run and re run that can produce a list of commands that
in turn will drive the robot towards its objectives.
*

Motor Foundation
MotorHAL (libMotorHAL.a)

Arduino (libRoboVisionSensorLib.a)

MD23 (libMD23.a)

Purpose :

An abstraction layer that can maximize code reuse , despite the constant changes in GuarddoG hardware.
Historically this consisted only of a Mindstorm Library which was later replaced by an MD23 and recently an
additional arduino for ultrasonic sensors , accelerometers and other low level peripherals. These can be changed
without impacting the rest of the codebase with substantially less effort and upkeep cost.

Key calls :

unsigned int RobotInit(char * md23_device_id,char * arduino_device_id);
unsigned int RobotClose();
void RobotWait(unsigned int msecs);
unsigned int RobotMoveJoystick(signed int joy_x,signed int joy_y);
unsigned int RobotRotate(unsigned char power,signed int degrees);
unsigned int RobotStartRotating(unsigned char power,signed int direction);
unsigned int RobotSetHeadNod(char * pose_string);
unsigned int RobotSetHeadPose(unsigned int heading,unsigned int pitch);
unsigned int RobotGetHeadPose(unsigned int * heading,unsigned int * pitch);
unsigned int RobotMove(unsigned char power,signed int distance);
unsigned int RobotStartMoving(unsigned char power,signed int direction);
unsigned int RobotManoeuvresPending();
void RobotStopMovement();

int RobotGetUltrasonic(unsigned int which_one);
int RobotGetAccelerometerX();
int RobotGetAccelerometerY();
int RobotSetLightsState(unsigned int light_num,unsigned int light_state);
int RobotIRTransmit(char * code,unsigned int code_size);

External Dependencies :

libUSB , pthreads

Output :

The MotorHAL library and the 2 sub libraries that communicate with the motors and arduino
periphericals are the gateway of the software to the real world.

*

 RoboKernel (libRoboKernel.a)

Purpose :

This is the core program daemon linked to from each of the the executables of GuarddoG. Its job is to start all of
the Input interfaces (IRC , GSM , Joystick , Scripts , Web Interface) and sub libraries and pass data between
modules. Executables use the IssueCommand to operate it and retrieve state information directly from the
submodules.

Key calls :

int IssueCommand(char * cmd,char * res,unsigned int resmaxsize,char * from);

unsigned char * GetVideoRegister(unsigned int num);
unsigned int GetCortexSetting(unsigned int option);
void SetCortexSetting(unsigned int option,unsigned int value);
unsigned int GetCortexMetric(unsigned int option);

int StartRoboKernel();
int StopRoboKernel();
int CheckThatRoboKernelStopped();

int RoboKernelAlive();

struct Map * GetWorldHandler();

External Dependencies :

pthread

Output :

 Robot functionality

Some of the smaller or incomplete libraries part of the project :

They are not analyzed for brevity
Auditory Input , Input Parser , IrcInterface ,RVKnowledge Base

*

Software

 3.1.3 Unified String Interface

In the process of reducing the surface area for the different libraries and their in between communication
, a mini scripting high-level language was developed (for now it only features functional usability , no
arithmetic operations , loops or other operators). This language serves as a layer between the different libraries
to make debugging easier and make the code more easily portable as parts of the design changed. For instance
joystick input was in the beginning handled using the Win32API , later on the design its code was replaced with
a wxWidgets wxJoystick implementation and finally by linux specific code which utilized directly the device
file /dev/input/js0 . During all the transitions joystick events were passed using JOYSTICK
INPUT(x_axis,y_axis). What is more , a user can in fact use his cell phone to send an SMS to the robot GSM
stick JOYSTICK INPUT(x_axis,y_axis) or using an IRC relay , or via the web interface and command the robot
just as he would in a local setup. This also makes the Executable program very agile and the computational
overhead is minuscule compared to the benefits of this design. Adding a working knowledge base to this
interface will make the robot much more “intelligent” since all inputs will share a common language and
complex queries using forward chain reasoning and other techniques. On an even more advanced level direct
object transformation into strings , without explicit orders from the robot's owner will make it more human-like
and intelligent although on a much lower level than human intelligence.

Command Details Command Details

DANGER Signal Alarm AUTO CALIBRATE Dynamic camera calibration

SAFE Stop Alarm Function DEPTH MAP Perform depth map

MOTION ALARM Signal Alarm on Motion HEAD POSE Change the pose of the head

PANORAMIC Take a panoramic image set SET LIGHT Activate / Deactivate lights

SWAP FEEDS Swap Camera Inputs (L/R) GOTO Move to new position

WEB INTERFACE Enable/Disable Web Interface FORWARD Move Forward

DRAW MOVEMENT Highlight movement on frame BACKWARD Move Backward

DRAW FEATURES Highlight Corners on frame LEFT Rotate Left

DRAW CALIBRATED Draw Calibrated input frames RIGHT Rotate Right

FIND FEATURES Find Features on input frames TOGGLE AUTO RECORD
SNAPSHOTS

CLEAR FEATURES Clear current feature list TOGGLE AUTO
PLAYBACK SNAPSHOTS

PLAYSOUND Plays a wav/ogg/etc file RECORD SNAPSHOT Record images

Command Details Command Details

RECORDSOUND Record an wav file RECORD COMPRESSED Record images

STOP SOUNDS Kill all prcesses playing sounds PLAYBACK SNAPSHOT Playback images

SAY Text To Speech echo string PLAYBACK LIVE Revert to live stream

DEPTH MAP TO FILE Save Depth map to file SENSORS Retrieve Sensor Value

REFRESH MAP Refresh map with new points SCRIPT Run Script

DEPTH MAP IMPORT
TO MAP

Refresh map with new points STOP SCRIPT Stop Script

SOBEL DERIVATIVE Apply Sobel Convolution filter HYPERVISOR STATISTICS Retrieve Statistics

CONVOLUTION FILTER Apply Convolution filter TELL Tell string to KB

FACE DETECTION Detects Faces on input frames ASK Ask string from KB

REMEMBER IMAGE Remember current image part SEARCH Search KB

IDENTIFY IMAGE Identify current image part JOYSTICK INPUT Simulate Joystick Movement

DELAY Delay next command FUNDAMENTAL MATRIX Calculate fundamental mat.

AUTONOMOUS MODE Start Autonomous mode - -

Communication Interfaces
Available that were Unified

GUI

CLI

External call to guarddog script

Web interface

IRC interface

GSM SMS Interface

Speech Interface via CMU-Sphinx

*

Future Work

 4.1.1 A list of future additions , improvements and ideas

 - CAD designed body
A CAD designed body has already beendesigned and it is awaiting the laser cutting procedure. It will

resolve many of the problems of the hand-assembled body of GuarddoG that is one of its biggest defects , since
it is not sturdy and impedes on its whole mission in a variety of ways.
 - Low Level Assembly (MMX/SSE3) optimizations

SIMD (single instruction multiple data) processor calls are very efficient in terms of making the most
out of the hardware used for large scale computational procedures. Unfortunately the source code implemented
as parts of VisualCortex and the other libraries does not include inlined MMX/SSE3 optimizations but the
temporary use of OpenCV for this functionality.
 - OpenCL / CUDA / VLSI acceleration

At the same line of improvements as low level assembly , hardware acceleration using OpenCL or
CUDA GPU acceleration can dramatically improve performance on linear algebra calculus which is the main
type of computations performed. This hardware is not yet part of GuarddoG due to the high cost and the
additional power consumption factor which prohibited its use. A VLSI dedicated implemenetation of some
algorithms could also be beneficial to the project but mass production OpenCL enabled GPUs will most likely be
the best hardware selection.
 - Network Connectivity – A Centralized Robot Patrol Registry Service

Supposing someone using GuarddoG to guard their office , one logical failure scenario is a perpetrator
permanently disabling the robot by instant physical destruction using a weapon. In this case the robot will not be
able to react or use its various modes of communication to report the inciedent. To avoid these kinds of problems
commercial “patrol service registries” could assume the role of receiving reports from registered robots at a user
chosen interval (i.e. 5 minutes) . That way if a robot fails to report for at least 10 minutes appropriate action
will be taken to notify the owner of the unexpected communication failure so that he may take the appropriate
steps needed.
 - Network Connectivity – Encryption over RF

Although GuarddoG currently has a very extensive list of options for network connectivity , and GSM /
GPRS / 3G functionality given the coverage available seems to suffice , using amateur radio frequencies that
provide great range on low frequencies could act as a “wide-area” silent alarm system for fail safe emergency
transmissions. Neighboring robots monitoring the channel could automatically utilize their own internet
connectivity access to forward messages or warn their owners of the local threat “in their neighborhood” . A
local organization of the “registry service” could also apply with neigboring robots talking to each other
regularly to achieve the same functionality.

*

 - Speech Recognition
 Speech recognition capabilities have already been tried in GuarddoG . Early versions utilized the

Microsoft SAPI with a small grammar configuration that enabled users to operate the robot using natural speech.
After the transition to Linux the CMU Sphinx project was used as a step-in replacement for the library but
despite its overall better performance it was never fully incorporated in the new library functionalities and later
dropped completely as a feature since it was out of the scope of the project goal.
 - NLP – AI Knowledge Base

Again as stated before in this text the string interface implemented is not versatile enough for intelligent
robot behavior. A NLP engine with a knowledge base coupled to the visual cues on the robot world would
certainly be a big missing link in a system that will transforming from a mindless appliance to a useful assistant.
This is currently happening in mobile devices with Iphone's SIRI (Speech Interpretation and Recognition
Interface) as a succesful example. Search engines and knowledge engines such as Wolfram Alpha , MIT
OpenMind could be a great framework for this kind of functionality.
 - Image / Face / Object Recognition

As a part of the GuarddoG work a face detection algorithm (HAAR Cascades) is used to extract a list of
faces. The detected faces however are not mapped to a specific person so the robot knows that it sees a face but
not whose face it is , a disability that occurs even in humans commonly known as Prosopagnosia. A proper
implementation should also create a database of known faces and after this step functionality could broaden to
include Object Detection and Recognition that will also greatly improve the SLAM that can leverage
information about surrounding objects to better estimate the robot location.
 - 3D Physics Simulation using ODE (Open Dynamic Engine)

Simple scene recognition could be improved using a Physics engine leading to better scene and
movement understanding. Various Open Source physics engines such as ODE have been used in robot projects (
particularly implementations with articulated robot bodies) to estimate pose , stability and practical movement
problems.
 - Commercial Personal Robots

Even with a perfect implementation on all technical aspects mentioned above , creating a marketable
commercial product poses an altogether different endeavor that will make it a suitable appliance. Successful
appliances long ago entering our households include the washing machine , the refrigerator , the mobile
telephone and other practical machines that humans use to satisfy their daily needs and solve their problems .
Robots will not be different and it will take a lot of time to become widely adopted , at the same time creating
controversies such as many new techonlogies have done in the past [51] .
 - Car sized guarddog or “CardoG”

 Another implementation of the same algorithms used in this project is driving a real automobile in the
city streets. Car manufacturers in the past century have done a great job gradually providing all the framework
needed for electrical power , steering , maintenance and passive safety so that leaves work adapting the controls
to the car infrastructure in a portable low budget way and more low level data gathered by LIDAR , high
precision GPS receivers , IMUs and high framerate cameras to help the algorithms do a better job. A recent
DARPA Grand Challenge in the US (2005) as well as the Grand Cooperative Drive Challenge in the EU and an
autonomous car designed by Google has shown that the technology is mature enough. The question is precision
and cost , and smart software plays a crucial part on both of the success factors so it is an area that is worthwhile
exploring.

*

Conclusion

Results and Conclusions

In this text the complete anatomy of a small-scale autonomous moving robot was presented in a
theoretical as well as a practical level. One of the novel aspects of the work done was a new implementation
using a traditional disparity mapping approach accelerated in a substantial way using integral images for
comparing image patches. The other result of the effort is a high performance software stack for autonomous
robots and an implementation test bed for it , the GuarddoG robot.

As far as the original project goal “to build a robotics platform that can act as a guard , traverse a
known path and fend off intruders. In case of a security breach it would signal the alarm and begin to follow the
perpetrator and after a set distance would resume its previous path.” , unfortunately the physical build does not
rise up to the original expectation and sadly the reason largely responsible is not software or mathematical
oversights but a mediocre hardware implementation. Although this was apparent early on in the procedure (back
when the plan of implementation was naively the Mindstorm kit) due to the large cost and non-existing budget
support for the project , which was entirely covered with own funds , the current physical implementation is
plagued by small problems which I hope to overcome in the future using laser-cut materials and better hardware
since the electronics on board the robot are now 4 years old .

Despite the shortcomings , it is clear to me know that the project goal is definitely achievable with
current day technology but a high quality end implementation is still not cheap enough for commercial
implementation. It is only a matter of time though , for the critical mass of technologies and science disciplines
to streamline even more of the different building blocks. Perhaps the largest and most costly problem for a
moving robot and by extension any moving electronic device with large power consumption is a robust power
supply system , and I estimate that breakthroughs in energy storage and computer power consumption would be
key factors for the robots of the future.

*

Epilogue

Photo Album

*

Epilogue

The end

Hansei (反省 , "self-reflection") is a central idea in Japanese culture. Its meaning is to acknowledge your own
mistake and to pledge improvement. This is similar to the German proverb Selbsterkenntnis ist der erste Schritt
zur Besserung where the closest translation would be "Self-awareness is the first step to improvement".

From Wikipedia

Building GuarddoG has been an arduous process of planning , experimenting , exploring different scientific and
technical domains , failing and then trying again. Autodidactism and reinventing the wheel has been common
through the 4 years course of the project that has led to a deeper understanding of the problems and development
process of such large scale endeavors. Perhaps the overambitious surface of the project was its pitfall proving
too much of a workload for a single developer , and perhaps if more of the implementation was used with ready-
made libraries from the start its timeline would have been much shorter. However arriving at a result by merely
observing it and arriving at the same result after reaching a deep understanding of all the mechanisms governing
“the truth” you were seeking are two very different things. Surface knowledge can never be compared and so
despite the great amount of time sacrificed , GuarddoG has been a wonderful experience , a big part of my life
and certainly the most interesting thing I have set my mind to accomplish so far. I am certain that in the decades
to come a great revolution will be widely available domestic robots that will free humanity from the boring tasks
of everyday life , and I hope to live long enough to see the day when this dream will come true. As for this text I
hope the way with which I presented the various topics will give a clear concise and comprehensive guide for a
reader seeking to start his journey , seeking the same goals as I did.

Acknowledgements
My parents , for their ethical and financial support.
FOSS programmers everywhere for their great work including GNU/Linux , OpenCV , Git etc.
Gerogios Papaioannou for his feedback and lending me the book Multiple Video Geometry for over 4 years.
Antonis Xenopoulos for his creative input and his CAD designs.
Mrs Marina Koutoula for her gift , the Lego Mindstorm used on the first steps of the project .
Artemis Nasopoulou for helping out during exhibitions , her emotional support and understanding. *

Illustration 60: Commit punchcard during the 2 year dev-period , generated by github

Bibliography / References

[0] Stuart Russel , Peter Norvig , Artificial Intelligence : A modern Approach

[1] Hartley, R.~I. and Zisserman , Multiple View Geometry in Computer Vision Second

Edition (2004) A. ISBN: 0521540518

[2] Forsyth, D.A. and Ponce, J., ``Computer Vision: A Modern Approach,'' 2nd edition 2011.

[3] Bradsky and Kachler , Learning OpenCV : Computer Vision with the OpenCV Library by

[4]Szeliski , Computer Vision : Algorithms and Applications

[5] Zhengyou Zhang , a Flexible New Technique for Camera Calibration (1998)

[6]Edward Rosten , Fusing points and lines for high performance tracking , Machine learning

for high-speed corner detection.

[7] Herbert Bay, Andreas Ess, Tinne Tuytelaars, Luc Van Gool, SURF: Speeded Up Robust

Features

[8]Jianbo Shi , Carlo Tomasi , Good Features to Track

[9]Yoav Freund, Robert E. Schapire. "A Decision-Theoretic Generalization of on-Line

Learning and an Application to Boosting", 1995

[10] Mischler , 3D Reconstruction from Depth And Stereo Images for Augmented Reality

Applications

[11] Koval , Vision-Based Autonomous Ground Vehicle Navigation (2011) , 3.1

Synchronization

[12] Stan Birchfield , Carlo Tomasi , Depth Discontinuities by Pixel-to-Pixel Stereo 1997

[13] Stan Birchfield , Carlo Tomasi , A Pixel Dissimilarity Measure That is Insensitive to Image

Sampling 1998

[14] Edward Rosten , Tom Drummond , Fusing Points and Lines for High Performance

Tracking

[15] Papageorgiou , Oren , Poggio , A General Framework for Object Detection , 1998

[16] Jianbo Shi , Carlo Tomasi , Good Features to Track 1994

[17]Dazhi Chen , Guangjun Zhang , A New Sub Pixel Detector for X-Corners in Camera

Calibration Targets

[18]Luca Lucchese , Sanjit K. Mitra , Using saddle points for subpixel feature detection in

camera calibration targets 2002

[19] Dieter Fox , Wolfram Burgard , Active Markov Localization for Mobile Robots

[20] Frank Dellaert , Dieter Fox , Wolfram Burgard ,Sebastian Thrun Markov Localization for

Mobile Robots

[21] Dieter Fox , Wolfram Burgard , Sebastian Thurn , Markov Localization for Mobile Robots

in Dynamic Environments

[22] Dieter Fox , Markov Localization : A probabilistic Framework for Mobile Robot

Localization and Navigation , 1998

[23] Bruce D. Lucas , Takeo Kanade An Iterative Image Registration Technique with an

Application to Stereo Vision , 1981

[24] Bruce D. Lucas Generalized Image Matching by the Method of Differences , 1984

[25] Kurt Konolige , Small Vision Systems : Hardware and Implementation

[26] Andreas Geiger , Martin Roser , Raquel Urtasun , Efficient Large-Scale Stereo Matching

[27] Heiko Hirschmuller , Accurate and Efficient Stereo Processing by Semi-Global Matching

and Mutual Information

[28] Ines Ernst , Heiko Hirschmuller , Mutual Information based Semi-Global Stereo Matching

on the GPU 2008

[29] Junhwan Kim , Vladimir Kolmogorov , Ramin Zabih , Visual Correspondence Using

Energy Minimization and Mutual Information 2003

[30] Daniel Scharstein , Richard Szeliski , A taxonomy and Evaluation of Dense Two-Frame

Stereo Correspondence Algorithms

[31] C.E. Shannon , A Mathematical Theory of Communication

[32] Ioannis M. Rekleitis , A Particle Filter Tutorial for Mobile Robot Localization 2002

[33] James Carpenter Peter Clifford , Paul Fearnhead , An Improved Particle Filter for Non-

linear Problems

[34] Michael K.Pitt , Neil Shephard , Filtering via Simulation : Auxiliary Particle Filters

[35] Georg Klein , Visual Tracking for Augmented Reality 2006

[36] Antoine Mischler , 3D Reconstruction from Depth and Stereo Images for augmented

Reality Applications

[37] M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting

with Applications to Image Analysis and Automated Cartography. Comm. of the ACM, Vol 24,

pp 381-395, 1981.

[38] Yoav Freund and Robert E. Schapire , A decision-theorietic generalization of on-line

learning and an application to boosting 1997

[39] Kenneth Levenberg , A method for the Solution of Certain Non-Linear Problems in Least

Squares , Quarterly of Applied Mathematics , 1944

[40] Donald Marquardt , An algorithm for Least-Squares estimation of nonlinear parameters ,

1963

[41] Jose Pujol , The solution of nonlinear inverse problems and the Levenberg-Marquardt

method , 2007

[42] Thorsten Thormahlen , Hellward Broszio , Patrick Mikulastik , Robust Linear Auto-

Calibration of a Moving Camera from Image Sequences , 2006

[43] Peter Sturm , Srikumar Ramalingam , A Generic Calibration Concept – Theory and

Algorithms , 2003

[44] Paul Viola , Michael Jones , Robust Real-time Object Detection , 2001

[45] M. Turk and A. Pentland (1991). "Face recognition using eigenfaces"

[46] Neural Network-Based Face Detection, 1998

[47] W. Kienzle, G. Bakir, M. Franz and B. Scholkopf: Face Detection - Efficient and Rank

Deficient. In: Advances in Neural Information Processing Systems 17, pg. 673-680, 2005

[48] Berthold K.P. Horn and Brian G. Schnuck , Determining Optical Flow , 1980

[49] Black and Anadan , The robust estimation of multiple motions : Parametric and

piecewise-smooth flow fields , 1996

[50] Georg Klein , Visual Tracking for Augmented Reality , 2006

[51] Sale , Kirkpatrick , Rebels against the future : the Luddites and their war on the Industrial

Revolution : lessons for the computer age , 1996

